Subscribe free to our newsletters via your
. 24/7 Space News .




CLONE AGE
New stem cell may overcome hurdles for regenerative medicine
by Staff Writers
La Jolla CA (SPX) May 11, 2015


In this image, a novel type of human stem cells is shown in green integrating and developing into the surrounding cells of a nonviable mouse embryo. Red indicates cells of endoderm lineage. Endoderm cells can give rise to tissue that covers organs from the digestive and respiratory systems. The new stem cells, developed at the Salk Institute, holds promise for one day growing replacement functional cells and tissues. Image courtesy Salk Institute. For a larger version of this image please go here.

Scientists at the Salk Institute have discovered a novel type of pluripotent stem cell--cells capable of developing into any type of tissue--whose identity is tied to their location in a developing embryo. This contrasts with stem cells traditionally used in scientific study, which are characterized by their time-related stage of development.

In the paper, published May 6, 2015 in Nature, the scientists report using these new stem cells to develop the first reliable method for integrating human stem cells into nonviable mouse embryos in a laboratory dish in such a way that the human cells began to differentiate into early-stage tissues.

"The region-specific cells we found could provide tremendous advantages in the laboratory to study development, evolution and disease, and may offer avenues for generating novel therapies," says Salk Professor Juan Carlos Izpisua Belmonte, senior author of the paper and holder of Salk's Roger Guillemin Chair.

The researchers dubbed this new class of cells "region-selective pluripotent stem cells," or rsPSCs for short. The rsPSCs were easier to grow in the laboratory than conventional human pluripotent stem cells and offered advantages for large-scale production and gene editing (altering a cell's DNA), both desirable features for cell replacement therapies.

To produce the cells, the Salk scientists developed a combination of chemical signals that directed human stem cells in a laboratory dish to become spatially oriented.

They then inserted the spatially oriented human stem cells (human rsPSCs) into specific regions of partially dissected mouse embryos and cultured them in a dish for 36 hours. Separately, they also inserted human stem cells cultured using conventional methods, so that they could compare existing techniques to their new technique.

While the human stem cells derived through conventional methods failed to integrate into the modified embryos, the human rsPSCs began to develop into early stage tissues. The cells in this region of an early embryo undergo dynamic changes to give rise to all cells, tissues and organs of the body.

Indeed the human rsPSCs began the process of differentiating into the three major cell layers in early development, known as ectoderm, mesoderm and endoderm. The Salk researchers stopped the cells from differentiating further, but each germ layer was theoretically capable of giving rise to specific tissues and organs.

Collaborating with the labs of Salk Professors Joseph Ecker and Alan Saghatelian, the Izpisua Belmonte team performed extensive characterization of the new cells and found rsPSCs showed distinct molecular and metabolic characteristics as well as novel epigenetic signatures--that is, patterns of chemical modifications to DNA that control which genes are turned on or off without changing the DNA sequence.

"The region selective-state of these stem cells is entirely novel for laboratory-cultured stem cells and offers important insight into how human stem cells might be differentiated into derivatives that give rise to a wide range of tissues and organs," says Jun Wu, a postdoctoral researcher in Izpisua Belmonte's lab and first author of the new paper.

"Not only do we need to consider the timing, but also the spatial characteristics of the stem cells. Understanding both aspects of a stem cell's identity could be crucial to generate functional and mature cell types for regenerative medicine."

Other authors on the paper include: Daiji Okamura, Mo Li, Keiichiro Suzuki, Li Ma, Zhongwei Li, Chris Benner, Isao Tamura, Marie N. Krause, Joseph R. Nery, Zhuzhu Zhang, Tomoaki Hishida, Yuta Takahashi, Emi Aizawa, Na Young Kim, Concepcion Rodriguez Esteban, Alan Saghatelian, Joseph Ecker, Chongyuan Luo, Yupeng He, all of the Salk Institute; Tingting Du, and Bing Ren of the University of California, San Diego; Jeronimo Lajara and Pedro Guillen, of UCAM Universidad Catolica San Antonio, Murcia, Spain; Josep M. Campistol, Hospital Clinic of Barcelona, Spain; and Pablo Ross of the University of California, Davis.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Salk Institute
The Clone Age - Cloning, Stem Cells, Space Medicine






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





CLONE AGE
Researchers discover transitional stem cells
Columbia, Mo. (UPI) Apr 16, 2015
While studying pre-eclampsia, a disease that affects pregnant women, researchers at the University of Missouri happened upon a new type of human embryonic stem cell. They say the previously unknown type of transitional stem cell will help advance research on pre-eclampsia and other little-understood reproductive disorders. "These new cells, which we are calling bone morphogenetic ... read more


CLONE AGE
Russia Invites China to Join in Creating Lunar Station

Japan to land first unmanned spacecraft on moon in 2018

Dating the moon-forming impact event with meteorites

Japan to land probe on the moon in 2018

CLONE AGE
Traffic Around Mars Gets Busy

Rock Spire in 'Spirit of St. Louis Crater' on Mars

Rover on the Lookout for Dust Devils

UAE opens space center to oversee mission to Mars

CLONE AGE
The language of invention: Most innovations are rephrasings of the past

NASA Confirms Electromagnetic Drive Produces Thrust in Vacuum

NASA pushes back against proposal to slash climate budget

Hawaii Says 'Aloha' to NASA's Low-Density Supersonic Decelerator

CLONE AGE
Xinhua Insight: How China joins space club?

Chinese scientists mull power station in space

China completes second test on new carrier rocket's power system

China's Yutu rover reveals Moon's "complex" geological history

CLONE AGE
Progress Incident Not Threatening Orbital Station, Work of Crew

Russia loses control of unmanned spacecraft

Japanese astronaut to arrive in ISS in May

Liquid crystal bubbles experiment arrives at International Space Station

CLONE AGE
ILS And Dauria announce Proton/Angara dual launch services agreement

SpaceX to test 'eject-button' for astronauts

India to launch 6 more satellites in 2015-16

Arianespace to launch HellaSat-4/SGS-1 for Arabsat and KACST

CLONE AGE
New exoplanet too big for its star

Robotically discovering Earth's nearest neighbors

Astronomers join forces to speed discovery of habitable worlds

Titan's Atmosphere Useful In Study Of Hazy Exoplanets

CLONE AGE
Real stereotypes continue to exist in virtual worlds

Researchers match physical and virtual atomic friction experiments

See flower cells in 3-D - no electron microscopy required

Northwestern scientists develop first liquid nanolaser




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.