. 24/7 Space News .
EARTH OBSERVATION
New satellite method enables undersea estimates from space
by Staff Writers
East Boothbay ME (SPX) Apr 06, 2018

File image of RV Roger Revelle.

Bigelow Laboratory for Ocean Sciences researchers have developed a statistical method to quantify important ocean measurements from satellite data, publishing their findings in the journal Global Biogeochemical Cycles. The study was made available online in December 2017, ahead of publication in January 2018.

Their research remedies a problem that has plagued scientists for decades: ocean-observing satellites are incredibly powerful tools, but they can only "see" the surface layer of the ocean, leaving most of its depths out of reach.

The new method makes it possible to quantify six types of particles that are key to understanding ocean dynamics and ocean-atmosphere interactions. Scientists have long used ocean color remote sensing to measure these particles in surface waters, and now, they will be able to reliably calculate concentrations of these particles through the water column. These calculations will provide data about the first 100 meters of ocean water, or to the depth where light levels dim to about 1 percent of the brightness at the surface.

One important algae quantified by this new technique are the coccolithophores, ocean plants that surround themselves with reflective chalk plates that, en masse, can cause entire ocean basins to reflect more light when they "bloom."

The effects of these microscopic coccolithophores are far-reaching: they influence biogeochemistry, global carbon cycling, and global microbial ecology. The carbon they produce when building their chalk plates even helps buffer the increasing acidity in the ocean caused by excess carbon dioxide in the atmosphere.

"It hit me that we've been calculating chlorophyll profiles from surface measurements for more than thirty years, but we don't know what the depth profiles of other biogeochemically-important materials look like," said Barney Balch, a senior research scientist at Bigelow Laboratory and lead author on the paper.

The researchers also studied variables related to other ocean plant groups, like diatoms, which build glass shells that carry carbon to the deep sea, sequestering it from the atmosphere. Understanding carbon cycling is essential to understanding present and future changes to global climate.

The effort to answer such huge questions was similarly great. Balch and his co-authors used data from 19 cruises, gathered from more than 1,300 locations in all of the world's oceans. From this vast dataset, they calculated the concentrations of six biogeochemically-relevant particles in the sunlit portion of the ocean.

"It's just a simple question, but it required a large global dataset to answer," Balch said. "The results provide new oceanographic insights into the ecology and biogeochemistry of these important algae and particles, and they make satellites an even more powerful tool for describing the entire illuminated depths of the ocean."

Research paper


Related Links
Bigelow Laboratory for Ocean Sciences
Earth Observation News - Suppiliers, Technology and Application


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


EARTH OBSERVATION
The saga of India's remote sensing satellite network
New Delhi, India (SPX) Mar 29, 2018
IRS-1A, the first of the series of indigenous state-of-art operating remote sensing satellites, was successfully launched into a polar sun-synchronous orbit on March 17, 1988 from the Soviet Cosmodrome at Baikonur. The successful launch of IRS-1A was one of the proudest moments for the entire country, which depicted the maturity of satellite to address the various requirements for managing natural resources of the nation. Its LISS-I had a spatial resolution of 72.5 meters with a swath of 148 km on ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EARTH OBSERVATION
Cargo-packed Dragon arrives at space station

Out of this world: Inside Japan's space colony centre

US astronauts make spacewalk to perform ISS repairs

Parachute Testing Lands Partners Closer to Crewed Flight Tests

EARTH OBSERVATION
SpaceX launches cargo to space station using recycled rocket, spaceship

New research payloads heading to ISS on SpaceX Resupply Mission

Rocket Lab 'Its Business Time' launch window to open 20 April 2018 NZT

Chinese scientists developing bee-inspired aerospace vehicle

EARTH OBSERVATION
Opportunity making extensive study of rock target Aguas Calientes

First test success for largest Mars mission parachute

Opportunity Completes In-Situ Work on 'Aguas Calientes'

Marsquakes could shake up planetary science

EARTH OBSERVATION
Earth-bound Chinese spacelab plunging to fiery end

China's 'space dream': A Long March to the moon

China says Earth-bound space lab to offer 'splendid' show

Tiangong-1 expected to burn up on reentering atmosphere

EARTH OBSERVATION
Relativity Space raises 35M in Series B funding

Storm hunter launched to International Space Station

SpaceX says Iridium satellite payload deployed

Spacecom selects SSL to build AMOS-8 comsat with advanced capabilities

EARTH OBSERVATION
Mars mission: how increasing levels of space radiation may halt human visitors

Point Nemo, Earth's watery graveyard for spacecraft

JFSCC tracks Tiangong-1's reentry over the Pacific Ocean

Laser beam traps long-lived sound waves in crystalline solids

EARTH OBSERVATION
X-rays could sterilise alien planets in otherwise habitable zones

Winning Exoplanet Rocket Sticker Selected

Paucity of phosphorus hints at precarious path for extraterrestrial life

Earth's stable temperature past suggests other planets could also sustain life

EARTH OBSERVATION
Jupiter's turmoil more than skin deep: researchers

New Horizons Chooses Nickname for 'Ultimate' Flyby Target

Jupiter's Great Red Spot getting taller as it shrinks

Jupiter's Jet-Streams Are Unearthly









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.