Subscribe to our free daily newsletters
. 24/7 Space News .




Subscribe to our free daily newsletters



MERCURY RISING
New research suggests Mercury's poles are icier than scientists thought
by Staff Writers
Providence RI (SPX) Sep 21, 2017


How this polar ice may have found its way to Mercury in the first place remains an open question, Deutsch says. The leading hypothesis is that it was delivered by water-rich comet or asteroid impacts. Another idea is that hydrogen may have been implanted in the surface by solar wind, later combining with an oxygen source to form water.

The scorching hot surface of Mercury seems like an unlikely place to find ice, but research over the past three decades has suggested that water is frozen on the first rock from the sun, hidden away on crater floors that are permanently shadowed from the sun's blistering rays. Now, a new study led by Brown University researchers suggests that there could be much more ice on Mercury's surface than previously thought.

The study, published in Geophysical Research Letters, adds three new members to the list of craters near Mercury's north pole that appear to harbor large surface ice deposits. But in addition to those large deposits, the research also shows evidence that smaller-scale deposits scattered around Mercury's north pole, both inside craters and in shadowed terrain between craters. Those deposits may be small, but they could add up to a lot more previously unaccounted-for ice.

"The assumption has been that surface ice on Mercury exists predominantly in large craters, but we show evidence for these smaller-scale deposits as well," said Ariel Deutsch, the study's lead author and a Ph.D. candidate at Brown. "Adding these small-scale deposits to the large deposits within craters adds significantly to the surface ice inventory on Mercury."

The idea that Mercury might have frozen water emerged in the 1990s, when Earth-based radar telescopes detected highly reflective regions inside several craters near Mercury's poles. The planet's axis doesn't have much tilt, so its poles get little direct sunlight, and the floors of some craters get no direct sunlight at all. Without an atmosphere to hold in any heat from surrounding surfaces, temperatures in those eternal shadows have been calculated to be low enough for water ice to be stable. That raised the possibility these "radar-bright" regions could be ice.

That idea got a boost after NASA's MESSENGER probe entered Mercury's orbit in 2011. The spacecraft detected neutron signals from the planet's north pole that were consistent with water ice.

For this new study, Deutsch worked with Gregory Neumann from NASA's Goddard Space Flight Center to take a deep dive into the data returned from MESSENGER. They looked specifically at readings from the spacecraft's laser altimeter. The device is mostly used to map elevation, but it can also be used to track surface reflectance.

Neumann, an instrument specialist for the MESSENGER mission, helped to calibrate the altimeter's reflectance signal, which can vary depending upon whether the measurement is taken from directly overhead or at an oblique angle (known as "off-nadir"). That calibration enabled the researchers to detect high reflectance deposits consistent with surface ice in three large craters for which only off-nadir detections were available.

The addition of those craters to Mercury's ice inventory is significant. Deutsch estimates the total area of the three sheets to be about 3,400 square kilometers - slightly larger than the state of Rhode Island.

But another major aspect of the work is that the researchers also looked at reflectance data for the terrain surrounding those three large craters. That terrain isn't as bright as the ice sheets inside the craters, but it's significantly brighter than the average Mercury surface.

"We suggest that this enhanced reflectance signature is driven by small-scale patches of ice that are spread throughout this terrain," Deutsch said. "Most of these patches are too small to resolve individually with the altimeter instrument, but collectively they contribute to the overall enhanced reflectance."

To seek further evidence that such smaller-scale deposits exist, the researchers looked though the altimeter data in search of patches that were smaller than the big crater-based deposits, but still large enough to resolve with the altimeter. They found four, each with diameters of less than about 5 kilometers.

"These four were just the ones we could resolve with the MESSENGER instruments," Deutsch said. "We think there are probably many, many more of these, ranging in sizes from a kilometer down to a few centimeters."

Knowing that these small-scale deposits exist, and that they're likely the source of the slightly brighter surface outside craters, could dramatically increase the ice inventory on Mercury. Similar small-scale ice deposits are thought to exist on the poles of the Moon. Research models have suggested that accounting for these small-scale deposits roughly doubles the amount of lunar real estate that could harbor ice. The same could be true on Mercury, the researchers say.

How this polar ice may have found its way to Mercury in the first place remains an open question, Deutsch says. The leading hypothesis is that it was delivered by water-rich comet or asteroid impacts. Another idea is that hydrogen may have been implanted in the surface by solar wind, later combining with an oxygen source to form water.

Jim Head, Deutsch's Ph.D. advisor and co-author of the research, said the work adds a new perspective on a critical question in planetary science.

"One of the major things we want to understand is how water and other volatiles are distributed through the inner solar system - including Earth, the Moon and our planetary neighbors," Head said. "This study opens our eyes to new places to look for evidence of water, and suggests there's a whole lot more of it on Mercury than we thought."

Research paper

MERCURY RISING
The BepiColombo spacecraft is ready to solve the many mysteries of Mercury
London, UK (The Conversation) Jul 13, 2017
The 1.65 billion euro BepiColombo spacecraft is now being unstacked for final tests after being displayed in its launch configuration to the world's press at the European Space Agency's Space Technology and Research Centre. The six-metre high assembly will soon be shipped to Kourou in French Guyana where it is anticipated to launch in October 2018. This is the culmination of nearly two dec ... read more

Related Links
Brown University
News Flash at Mercury
Mars News and Information at MarsDaily.com
Lunar Dreams and more


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

MERCURY RISING
Aussie astronaut calls for establishment of national space agency

Space Cooperation Between China, Russia Needs Long-Term Mechanism

Mapping NASA's Space Missions

Tech dreams live or die on startup battlefields

MERCURY RISING
What looks good on paper may look good in space

Demonstrator 3 linear aerospike ready to start tests

ISRO to resume satellite launches by December

Mechanisms are Critical to Space Vehicle Flight Success

MERCURY RISING
HIAD heat shield material feels the burn during arc jet testing

Devilish Source of Dust in Atmosphere of Earth and Mars

Hope to discover sure signs of life on Mars

3-D Analysis Offers New Info on Martian Climate Change, Age of Polar Caps

MERCURY RISING
Mars probe to carry 13 types of payload on 2020 mission

China's cargo spacecraft separates from Tiangong-2 space lab

Work on China's mission to Mars 'well underway'

Chinese company eyes development of reusable launch vehicle

MERCURY RISING
Thomas calls for new comprehensive Australian Space Agency at IAC address

CSU Launches Nation's First Space Law Center

Lockheed Martin introduces new satellite bus lineup

Bulgaria Sat Wins "Newcomer Satellite Operator of the Year" for 2017

MERCURY RISING
Positive, negative or neutral, it all matters: NASA explains space radiation

Space radiation is risky business for the human body

Corrosion in real time

Self-healing gold particles

MERCURY RISING
Scientists propose new concept of terrestrial planet formation

The return of the comet-like exoplanet

New prediction of a detection wavelength for searching phototrophs on exoplanets

Hubble observes pitch black planet

MERCURY RISING
Global Aerospace Corporation to present Pluto lander concept to NASA

Pluto features given first official names

Hibernation Over, New Horizons Continues Kuiper Belt Cruise

Jupiter's Auroras Present a Powerful Mystery




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement