Subscribe free to our newsletters via your
. 24/7 Space News .




WATER WORLD
Most abundant ocean organisms have clear daily cycles
by Staff Writers
Manoa HI (SPX) Jul 11, 2014


File image.

Imagine the open ocean as a microbial megacity, teeming with life too small to be seen. In every drop of water, hundreds of types of bacteria can be found. Now scientists have discovered that communities of these ocean microbes have their own daily cycles-not unlike the residents of a bustling city who tend to wake up, commute, work, and eat at the same times.

What's more, it's not all about the sun. Light-loving photoautotrophs-bacteria that need solar energy to help them photosynthesize food from inorganic substances-have been known to sun themselves on a regular schedule.

But in a new study published in the journal Science, researchers working at Station ALOHA, a deep ocean study site 100 km north of Oahu, observed different species of free-living, heterotrophic bacteria turning on diel cycling genes at slightly different times-suggesting a wave of transcriptional activity that passes through the microbial community each day.

"I like to say they are singing in harmony," said Edward F. DeLong, professor of Oceanography at University of Hawaii at Manoa and the head of the Massachusetts Institute of Technology team that made this discovery.

"For any given species, the gene transcripts for specific metabolic pathways turn on at the same time each day, which suggests a sort of temporal compartmentalization," said DeLong, who was the first scientist to be hired by the University under the auspices of the Hawai'i Innovation Initiative. "It's a biologically and biogeochemically relevant new result."

The observations were made possible by advanced microbial community RNA sequencing techniques, which allow for whole-genome profiling of multiple species at once.

The work was a collaboration between the Monterey Bay Aquarium Research Institute and DeLong's team, who together employed a free-drifting robotic Environmental Sample Processor (ESP) as part of a Center for Microbial Oceanography: Research and Education (C-MORE) research cruise at Station ALOHA.

Riding the same ocean currents as the microbes it follows, the ESP is uniquely equipped to harvest the samples needed for this high-frequency, time-resolved analysis of microbial community dynamics.

What scientists saw was intriguing: different species of bacteria expressing different types of genes in different, but consistent, cycles-turning on, for example, the type of restorative genes needed to rebuild their solar-collecting powers at night, then ramping up with different gene activity to build new proteins during the day.

"The regularity and timing of individual microbial activities is somewhat like a new shift of hourly workers punching in and out of the clock, day after day," DeLong said.

The coordinated timing of gene firing across different species of ocean microbes could have important implications for energy transformation in the sea. Marine microbes are critically linked to ocean health and productivity. The mechanisms that regulate this periodicity remain to be determined.

But can you set your watch to it? DeLong says you can, but it matters whether you're tracking the bacteria in the lab or out at sea. For example, maximal light levels at 23 meters depth at Station ALOHA were twice as high as light conditions that were previously used in experimental settings in the laboratory-which may have an effect on microbe activity and daily cycles. That's part of why it's so important to conduct this research in the actual open ocean environment.

This study was funded in part by the National Science Foundation and by a grant from the Gordon and Betty Moore Foundation [Grant GBMF3777]. Separately, in 2013, the Moore Foundation's national Marine Microbiology Initiative awarded DeLong and UH Manoa professor David Karl $4.2 million to explore how the trillions of microscopic organisms at the base of the ocean's food webs interact with each other and the environment.

DeLong aims to continue his groundbreaking in situ ocean research with support from the Moore Foundation and as co-director of the new Simons Collaboration on Ocean Processes and Ecology (SCOPE), a five-year $40 million collaboration funded by the largest private gift in UH history.

"There are some fundamental laws to be learned about how organisms interact, to make the system work better as a whole and be more efficient," DeLong said. "At its base, that's one of the main things we're after in SCOPE-these fundamental principles that make ecosystems work. These findings have tremendous applications in all sorts of arenas."

Elizabeth A. Ottesen, Curtis R. Young, Scott M. Gifford, John M. Eppley, Roman Marin III, Stephan C. Schuster, Christopher A. Scholin, and Edward F. DeLong. "Multispecies diel transcriptional oscillations in open ocean heterotrophic bacterial assemblages." Science. 11 July 2014.

.


Related Links
University of Hawaii at Manoa
Water News - Science, Technology and Politics






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





WATER WORLD
Beautiful but a threat: Tropical fish invasion destroys kelp forests
Sydney NSW (SPX) Jul 11, 2014
The migration of tropical fish as a result of ocean warming poses a serious threat to the temperate areas they invade, because they overgraze on kelp forests and seagrass meadows, a new study concludes. The harmful impact of tropical fish is most evident in southern Japanese waters and the eastern Mediterranean, where there have been dramatic declines in kelps. There is also emerging evide ... read more


WATER WORLD
NASA LRO's Moon As Art Collection Is Revealed

Solar photons drive water off the moon

55-year old dark side of the moon mystery solved

New evidence supporting moon formation via collision of 2 planets

WATER WORLD
First LDSD Test Flight a Success

Rover Has Enough Energy for Some Late-Night Work

Curiosity travels through ancient glaciers on Mars

New Type of Dust in Martian Atmosphere Discovered

WATER WORLD
Taiwan's tourism revenue hits record high in 2013

Fruit fly immunity fails with fungus after (space)flight

From Deep Sea to Deep Space

Commercial Crew Partners Focus on Testing, Analysis to Advance Designs

WATER WORLD
Chinese moon rover designer shooting for Mars

Yutu designer's bittersweet

Are China's Astronauts Moonbound

Chinese scientists prepare for lunar base life support system

WATER WORLD
NASA Television Coverage Set for Orbital-2 Mission to Space Station

Spot the Space Station looking at you

Closing the recycling circle

Space station astronauts wager friendly bet on USA vs. Germany match

WATER WORLD
Eco-Friendly 'Angara' Rocket Installed On Plesetsk Launch Pad

Singapore launches its first nano-satellite

NASA's sounding rocket crashes into Atlantic

NASA aborts launch of OCO-2

WATER WORLD
Discovery expands search for Earth-like planets

Astronomers discover most Earth-like of all exoplanets

Mega-Earth in Draco Smashes Notions of Planetary Formation

Kepler space telescope ready to start new hunt for exoplanets

WATER WORLD
Even geckos can lose their grip

Platonic solids generate their four-dimensional analogues

Consider the 'Anticrystal'

Inspired by Nature, Researchers Create Tougher Metal Materials




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.