. 24/7 Space News .
STELLAR CHEMISTRY
New oscillating material may tap unused electromagnetic spectrum
by Brooks Hays
Palo Alto, Calif. (UPI) Oct 3, 2016


disclaimer: image is for illustration purposes only

The terahertz gap is an unused portion of the electromagnetic spectrum comprising frequencies between radio waves and infrared radiation. No technologies currently utilize terahertz signals.

But that could soon change thanks to scientists at Stanford University, who recently developed a material that allows electrons to oscillate at terahertz frequencies.

Stanford professor and Nobel laureate Felix Bloch first theorized that uniquely structured materials could host terahertz oscillations several decades ago. Now, scientists believe they've turned theory into reality.

The key to hosting Bloch's oscillations is creating consistent nanoscale patterns so electrons can travel without interruption for significant distances. The ideal medium for such patterns are two-dimensional materials and superlattices, like graphene.

Graphene consists of atom-thick layers of carbon. The carbon atoms are arranged in a lattice or honeycomb-like pattern. Researchers found that when they sandwiched a sheet of graphene between two layers of boron nitride, electrons flow along a special wave interference pattern called a moiré pattern -- a pattern Bloch theorized could host terahertz signals.

If researchers can trap electrons within the narrow energy bands of the moiré superlattice for long enough, they should vibrate at terahertz frequencies. Now that they have a proper medium, researchers say they are a step closer to emitting and sensing of terahertz signals.

The moiré superlattice material also presented a surprising new electronic structure.

"In semiconductors, like silicon, we can tune how many electrons are packed into this material," David Goldhaber-Gordon, a physics professor at Stanford, said in a news release. "If we put in extra, they behave as though they are negatively charged. If we take some out, the current that moves through the system behaves as if it's instead composed of positive charges, even though we know it's all electrons."

In the new material, the opposite is true. Additional electrons produce a positive charge, while subtraction yields a negative charge.

Researchers say the new materials could ultimately inspire a variety of new technologies. Ultra-sensitive terahertz scanners could replace microwaves scanners at airport security checkpoints, for example.

"This is going to be an area that opens up a lot of new possibilities," said Goldhaber-Gordon, "and we're just at the start of exploring what we can do."

Researchers described their latest findings in the journal Science.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
STELLAR CHEMISTRY
More stable way to send light through nano-photonic fibers
Daejeon, South Korea (UPI) Sep 19, 2016
Many phones, TVs and computers already rely on optical cables, which carry information in the form of light. But engineers have struggled to achieve stable light propagation across long distances. Thus, most optical cables require the introduction of an amplifier every so often. New research promises an amplifier-free future for optical fibers. In a new study, published this week ... read more


STELLAR CHEMISTRY
Exploration Team Shoots for the Moon with Water-Propelled Satellite

Space tourists eye $150mln Soyuz lunar flyby

Roscosmos to spend $7.5Mln studying issues of manned lunar missions

Lockheed Martin, NASA Ink Deal for SkyFire Infrared Lunar Discovery Satellite

STELLAR CHEMISTRY
MAHRS on Mars: Looking at Weather and Habitat on the Surface

Elon Musk envisions 'fun' trips to Mars colony

Elon Musk envisions 'fun' but dangerous trips to Mars

Pacamor Kubar Bearings awarded contract to support Mars 2020 Mission

STELLAR CHEMISTRY
Software star Google expected to flex hardware muscle

California dreamin' for Chinese investors in US

Yoyager's Golden Record not just for aliens anymore

Indian Space Organization Gears Up for First Multi-Orbit Mission

STELLAR CHEMISTRY
Tiangong-2 space lab enters preset orbit for docking with manned spacecraft

Batch production of Long March 5 underway

Chinese Space Lab Tiangong-2 Ready to Dock With Manned Spacecraft

Scientific experiment apparatuses on Tiangong-2 put into operation

STELLAR CHEMISTRY
NASA, JAXA Focus on Maximizing Scientific Output From Space Station

Manned launch of Soyuz MS-02 maybe postponed to Nov 1

Russia cancels manned space launch over 'technical' issues

US astronauts complete spacewalk for ISS maintenance

STELLAR CHEMISTRY
Arianespace to launch satellites for Australia and India with Ariane 5

Launch of Atlas V Rocket With WorldView-4 Satellite Postponed Till October

Rocket agreement marks countdown to New Zealand's first space launch

Parallel launch preparations put Ariane 5 on track for next launch

STELLAR CHEMISTRY
Protoplanetary Disk Around a Young Star Exhibits Spiral Structure

New Low-Mass Objects Could Help Refine Planetary Evolution

Pluto's heart sheds light on a possible buried ocean

Hubble Finds Planet Orbiting Pair of Stars

STELLAR CHEMISTRY
Use of 'large open-ended pipe piles' could lead to lower-cost bridge construction

Yes, the rumors are true! Brandeis really has a space chair

Levitating nanoparticle improves torque sensing in quest for quantum theory fundamentals

Apple teams with Deloitte to push deeper into work









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.