. 24/7 Space News .
STELLAR CHEMISTRY
New observations help explain the dimming of Tabby's Star
by Staff Writers
New York NY (SPX) Sep 17, 2019

A new Columbia study suggests chunks of an exomoon's dusty outer layers of ice, gas, and carbonaceous rock may be accumulating in a disk surrounding Tabby's Star, blocking the star's light and making it appear to gradually fade.

For years, astronomers have looked up at the sky and speculated about the strange dimming behavior of Tabby's Star. First identified more than a century ago, the star dips in brightness over days or weeks before recovering to its previous luminosity. At the same time, the star appears to be slowly losing its luster overall, leaving researchers scratching their heads. Now, astronomers at Columbia University believe they've developed an explanation for this oddity.

In a new paper published in the Monthly Notices of the Royal Astronomical Society, astrophysicists Brian Metzger, Miguel Martinez and Nicholas Stone propose that the long-term dimming is the result of a disk of debris - torn from a melting exomoon - that is accumulating and orbiting the star, blocking its light as the material passes between the star and Earth.

"The exomoon is like a comet of ice that is evaporating and spewing off these rocks into space," said Metzger, associate professor of astrophysics at Columbia University and principal investigator on the study.

"Eventually the exomoon will completely evaporate, but it will take millions of years for the moon to be melted and consumed by the star. We're so lucky to see this evaporation event happen."

Tabby's Star, also known as KIC 8462852 or Boyajian's Star, is named after Tabetha Boyajian, the Louisiana State University (LSU) astrophysicist who discovered the star's unusual dimming behavior in 2015.

Boyajian found that Tabby's Star occasionally dips in brightness - sometimes by just 1 percent and other times by as much as 22 percent - over days or weeks before recovering its luster. A year later, LSU astronomer Bradley Schaefer discovered that the star's brightness is also becoming fainter overall with time, dimming by 14 percent between 1890 and 1989.

Scientists around the world have proposed a variety of theories, ranging from comet storms to alien "megastructures," to explain the short-term dips in brightness, but very recently agreed on a much more mundane culprit - dust.

As an exoplanet is destroyed by strong interactions or collisions with its parent star, Metzger explained, the exomoon orbiting the exoplanet can become vulnerable to the pull of the system's central star. The force can be so great that the star rips the exomoon away from its planet, causing the exomoon to either collide with a star or otherwise be ejected from the system.

In a small percentage of cases, however, the star steals the exomoon and places it into a new orbit around itself. In this new orbit, the icy, dusty exomoon is exposed to radiation from the star that rips apart its outer layers, creating dust clouds that are eventually blown out to the solar system. When those clouds of dust pass between the star and Earth, intermittent dips in brightness are observed.

This explains the short-term, inconsistent dimming of Tabby's Star, but researchers have had a harder time explaining the long-term overall fading.

The Columbia team suggests that Tabby's Star abducted an exomoon from a now long-gone, nearby planet and pulled it into orbit around itself, where it has been getting torn apart by stronger stellar radiation than existed in its former orbit.

Chunks of the exomoon's dusty outer layers of ice, gas, and carbonaceous rock have been able to withstand the radiation blow-out pressure that ejects smaller-grain dust clouds, and the volatile, large-grain material has inherited the exomoon's new orbit around Tabby's Star, where it forms a disk that persistently blocks the star's light.

The opaqueness of the disk can change slowly, as smaller-grain clouds pass through and larger particles stuck in orbit move from the disk toward Tabby's Star, eventually getting so hot that they melt and fall onto the star's surface.

Ultimately, after millions of years, the exomoon orbiting Tabby's Star will completely evaporate, the researchers suggest.

Martinez, a Columbia College alumnus (CC'19) and researcher working with Metzger, said the team's model is unique in its hypothesis of what drives the original planet toward the star in the first place.

"It naturally results in the orphaned exomoons ending up on (highly eccentric) orbits with precisely the properties previous research had shown were needed to explain the dimming of Tabby's star," Martinez said. "No other previous model was able to put all these pieces together."

There are other stellar systems that demonstrate unusual brightness dips, Martinez said, and there may be other explanations for the flux that are equally compelling. Tabby's Star is unusual because it is very similar to Earth's sun but is exhibiting drastically different behavior. It is the only star like it among the one million stars observed by Kepler, but there are many million times more stars in the universe that have yet to be observed.

The challenge now is finding other stars like Tabby's that have abducted exomoons and have not yet finished annihilating them. If the team's explanation is correct, Metzger said, it indicates that moons are a common feature of exoplanetary systems, thereby providing a way to probe the existence of exomoons.

"We don't really have any evidence that moons exist outside of our solar system, but a moon being thrown off into its host star can't be that uncommon," he said. "This is a contribution to the broadening of our knowledge of the exotic happenings in other solar systems that we wouldn't have known 20 or 30 years ago."


Related Links
Columbia University
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
Scientists discover a new type of pulsating star
Santa Barbara CA (SPX) Aug 05, 2019
Scientists can tell a lot about a star by the light it gives off. The color, for example, reveals its surface temperature and the elements in and around it. Brightness correlates with a star's mass, and for many stars, brightness fluctuates, a bit like a flickering candle. A team of scientists led by UC Santa Barbara researcher Thomas Kupfer recently discovered a new class of these pulsators that vary in brightness every five minutes. Their results appeared in The Astrophysical Journal Letters. ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Innovative model created for NASA to predict vitamin levels in spaceflight food

Testing and Training on the Boeing Starliner

A new journey into Earth for space exploration

Natalie Portman joins Hollywood space race with 'Lucy in the Sky'

STELLAR CHEMISTRY
Baikonur Cosmodrome Getting Ready for Last Launch of Russian Rocket With Ukrainian Parts

Fire forces Japan to cancel rocket launch to ISS

SES selects SpaceX to launch O3b mPOWER MEO communications system

China to launch Third Long March 5 by year end

STELLAR CHEMISTRY
Mars 2020 Spacecraft Comes Full Circle

NASA Research Gives New Insight into How Much Atmosphere Mars Lost

'Martian CSI' Sheds Light on How Asteroid Impacts Generated Running Water Under Red Planet

NASA engineers attach Mars Helicopter to Mars 2020 rover

STELLAR CHEMISTRY
China's KZ-1A rocket launches two satellites

China's newly launched communication satellite suffers abnormality

China launches first private rocket capable of carrying satellites

Chinese scientists say goodbye to Tiangong-2

STELLAR CHEMISTRY
Winning bootcamp ideas at Phi-week

Private Chinese firms tapping international space market

Iridium and Thales Expand Partnership to Deliver Aircraft Connectivity Services

ESA re-routes satellite to avoid SpaceX collision risk

STELLAR CHEMISTRY
Suomi-NPP Satellite Instrument Restored After Radiation Damage

Bolivia, with huge untapped reserves, gears up for soaring lithium demand

Shaken but not stirred: Konnect satellite completes vibration tests

China data centres set to consume more power than Australia: report

STELLAR CHEMISTRY
First water detected on potentially 'habitable' planet

First Water Detected on Planet in the Habitable Zone

The rare molecule weighing in on the birth of planets

Research redefines lower limit for planet size habitability

STELLAR CHEMISTRY
Storms on Jupiter are disturbing the planet's colorful belts

ALMA shows what's inside Jupiter's storms

Young Jupiter was smacked head-on by massive newborn planet

Mission to Jupiter's icy moon confirmed









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.