. 24/7 Space News .
ENERGY TECH
New nanomaterial can extract hydrogen fuel from seawater
by Staff Writers
Orlando FL (SPX) Oct 05, 2017


Artist's conceptualization of the hybrid nanomaterial photocatalyst that's able to generate solar energy and extract hydrogen gas from seawater.

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF researcher Yang Yang has come up with a new hybrid nanomaterial that harnesses solar energy and uses it to generate hydrogen from seawater more cheaply and efficiently than current materials.

The breakthrough could someday lead to a new source of the clean-burning fuel, ease demand for fossil fuels and boost the economy of Florida, where sunshine and seawater are abundant.

Yang, an assistant professor with joint appointments in the University of Central Florida's NanoScience Technology Center and the Department of Materials Science and Engineering, has been working on solar hydrogen splitting for nearly 10 years.

It's done using a photocatalyst - a material that spurs a chemical reaction using energy from light. When he began his research, Yang focused on using solar energy to extract hydrogen from purified water. It's a much more difficulty task with seawater; the photocatalysts needed aren't durable enough to handle its biomass and corrosive salt.

As reported in the journal Energy and Environmental Science, Yang and his research team have developed a new catalyst that's able to not only harvest a much broader spectrum of light than other materials, but also stand up to the harsh conditions found in seawater.

"We've opened a new window to splitting real water, not just purified water in a lab," Yang said. "This really works well in seawater."

Yang developed a method of fabricating a photocatalyst composed of a hybrid material. Tiny nanocavities were chemically etched onto the surface of an ultrathin film of titanium dioxide, the most common photocatalyst. Those nanocavity indentations were coated with nanoflakes of molybdenum disulfide, a two-dimensional material with the thickness of a single atom.

Typical catalysts are able to convert only a limited bandwidth of light to energy. With its new material, Yang's team is able to significantly boost the bandwidth of light that can be harvested. By controlling the density of sulfur vacancy within the nanoflakes, they can produce energy from ultraviolet-visible to near-infrared light wavelengths, making it at least twice as efficient as current photocatalysts.

"We can absorb much more solar energy from the light than the conventional material," Yang said. "Eventually, if it is commercialized, it would be good for Florida's economy. We have a lot of seawater around Florida and a lot of really good sunshine."

In many situations, producing a chemical fuel from solar energy is a better solution than producing electricity from solar panels, he said. That electricity must be used or stored in batteries, which degrade, while hydrogen gas is easily stored and transported.

Fabricating the catalyst is relatively easy and inexpensive. Yang's team is continuing its research by focusing on the best way to scale up the fabrication, and further improve its performance so it's possible to split hydrogen from wastewater.

Research paper

ENERGY TECH
Scientists harvest electricity from tears
Washington (UPI) Oct 1, 2017
Sad about the battery drain on your new smartphone? A good cry might help. Scientists have found a way to harvest electricity from tears. In recent lab experiments, researcher at the University of Limerick's Bernal Institute, in Ireland, found lysozyme crystals yield an electric current when pressurized. Lysozyme is found in tears and saliva, as well as the whites of bird eggs and the m ... read more

Related Links
University of Central Florida
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
Space Cooperation Between China, Russia Needs Long-Term Mechanism

NASA's New Hubble E-Book Series Dives into the Solar System and Beyond

Mapping NASA's Space Missions

Aussie astronaut calls for establishment of national space agency

ENERGY TECH
What looks good on paper may look good in space

Demonstrator 3 linear aerospike ready to start tests

ISRO to resume satellite launches by December

Mechanisms are Critical to Space Vehicle Flight Success

ENERGY TECH
The Mars 2020 Rover features new spectral abilities with its new SuperCam

Devilish Source of Dust in Atmosphere of Earth and Mars

3-D Analysis Offers New Info on Martian Climate Change, Age of Polar Caps

HIAD heat shield material feels the burn during arc jet testing

ENERGY TECH
Mars probe to carry 13 types of payload on 2020 mission

China's cargo spacecraft separates from Tiangong-2 space lab

Work on China's mission to Mars 'well underway'

Chinese company eyes development of reusable launch vehicle

ENERGY TECH
The ESA 500: fostering start-up companies to use space technology on Earth

Thomas calls for new comprehensive Australian Space Agency at IAC address

AsiaSat 9 Set for Launch from Baikonur on September 29

Australia to create national space agency

ENERGY TECH
UV-irradiated amorphous ice behaves like liquid at low temperatures

The 3-D selfie has arrived

Ultracold atoms point toward an intriguing magnetic behavior

Researchers developing new technique that uses light to separate mirrored molecules

ENERGY TECH
Scientists propose new concept of terrestrial planet formation

The return of the comet-like exoplanet

New prediction of a detection wavelength for searching phototrophs on exoplanets

Hubble observes pitch black planet

ENERGY TECH
Solving the Mystery of Pluto's Giant Blades of Ice

Global Aerospace Corporation to present Pluto lander concept to NASA

Pluto features given first official names

Hibernation Over, New Horizons Continues Kuiper Belt Cruise









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.