Subscribe to our free daily newsletters
. 24/7 Space News .




Subscribe to our free daily newsletters



ENERGY TECH
New model deepens understanding of the dynamics of quark-gluon plasmas
by Staff Writers
Sao Paulo, Brazil (SPX) Jun 08, 2017


Diagram shows variations in energy density inside a quark-gluon plasma. Different colors refer to different levels of energy density, in accordance with the scale shown in the right-hand column. Image courtesy Researcher's archive.

Quark-gluon plasmas are among the subjects that have been most extensively researched by physicists in recent times. Thanks to the largest particle accelerators in operation today - the Large Hadron Collider (LHC) in Europe and the Relativistic Heavy Ion Collider (RHIC) in the United States - it is now possible to reproduce a quark-gluon plasma in the laboratory. This state of matter is believed to have predominated in the universe for a fraction of a second after the Big Bang.

According to the standard cosmological model, the duration of the quark-gluon plasma in the primordial universe was no more than one millionth of a second, since the universe is thought to have cooled approximately 10-6 s after the Big Bang to the extent that quarks and gluons could no longer move freely and instead became confined in hadrons (protons, neutrons, mesons, etc.).

In the high-energy nuclear collisions produced at the LHC and RHIC, the quark-gluon plasmas last for an even shorter time - approximately 10-23 s - because of steep pressure gradients. Despite their transience and tiny volume (the diameter of a proton is on the order of 10-15 m), quark-gluon plasmas conceal intense and complex inner activity.

This activity is gradually being unveiled in LHC and RHIC experiments, and new theoretical approaches have been developed to explain or predict their results. A case in point, among many others, is the study "Hydrodynamic predictions for mixed harmonic correlations in 200 GeV Au+Au collisions", published in Physical Review C and highlighted as an Editors' Suggestion.

The study was performed by Fernando Gardim, from the Science and Technology Institute at the Federal University of Alfenas, Minas Gerais State (Southeast Brazil); Frederique Grassi and Matthew Luzum, from the Physics Institute at the University of Sao Paulo (USP); and Jacquelyn Noronha-Hostler, from the Department of Physics at the University of Houston.

"Because of its very short duration, a quark-gluon plasma can't be observed directly," Grassi told. "The experiments are able to detect the hadrons formed when quarks and gluons recombine. These hadrons propagate in several directions. Their angular distribution around the axis of collision supplies highly relevant information about the plasma's structure and dynamics and, consequently, about the nature of the fundamental interactions in matter. Our study, which was theoretical, set out to predict specific patterns in the hadrons' angular distribution."

The researchers used a hydrodynamic model called NeXSPheRIO, which accurately reproduced a broad range of data obtained experimentally at RHIC. The computer simulations performed on this basis enabled the researchers to make predictions that can be tested in new experiments so that the model can be validated or corrected.

"The angular distribution observed in the experiments is decomposed into a sequence known in mathematics as a Fourier series," Grassi explained. "Each term in the series corresponds to a specific feature of the distribution, and the series as a whole tells us how many particles move according to each pattern. The phrase 'mixed harmonic correlations' used in the title is the technical term that names the correlations among different Fourier coefficients.

"If a quark-gluon plasma were strictly homogeneous and had the properties of a gas [if its particles interacted very little], then the resulting flow of hadrons would be isotropic [equal in all directions]. But that's not the case. Actual flows detected experimentally are anisotropic, and the angular distribution exhibits non-null Fourier coefficients, which tells us that the plasma is not homogeneous and that its particles interact strongly."

The distribution coefficients are classified according to their geometric characteristics as elliptic, triangular, quadrangular, pentagonal, etc. The predominant flow is elliptic, because the hadron jet is much stronger in one of the directions orthogonal to the axis of collision.

This distribution, which results from the strong interaction between quarks and gluons, indicates that the plasma is not a gas but a liquid. However, it is not just any liquid: the fact that the elliptic flow is not attenuated shows that the viscosity of this liquid is extremely low. In fact, a quark-gluon plasma is the least viscous - or most perfect - liquid ever discovered.

"Previous research had already shown that a quark-gluon plasma is a quasi-perfect liquid. What our study added was a better understanding of the non-homogeneity of the energy distribution inside the plasma," Grassi explained. With its very short duration and minute dimensions, a quark-gluon plasma is highly dynamic. Fluctuations cause its energy density to vary from one region to another. The study offers deeper insight into the link between these dynamics and fluctuations.

"Because NeXSPheRIO has so far agreed well with all observations made to date at RHIC, we believe its predictions can be used as a basis of comparison for new measurements to be made at the US collider," Grassi said. "Any deviation from the predictions will supply valuable non-trivial information, either about the initial phase of the collision that gives rise to the plasma or about the intrinsic properties of the medium."

ENERGY TECH
Physicists discover that lithium oxide on tokamak walls can improve plasma performance
Plainsboro NJ (SPX) May 22, 2017
Lithium compounds improve plasma performance in fusion devices just as well as pure lithium does, a team of physicists at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) has found. The research was conducted by former Princeton University physics graduate student Matt Lucia under the guidance of Robert Kaita, principal research physicist at PPPL and one of ... read more

Related Links
Fundacao de Amparo a Pesquisa do Estado de Sao Paulo
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
First Year of BEAM Demo Offers Valuable Data on Expandable Habitats

Conch shells may inspire better helmets, body armor

NASA honors Kennedy's space vision on 100th birthday

MIT researchers engineer shape-shifting food

ENERGY TECH
Colossal rocket-launching plane rolls toward testing

Dream Chaser Spacecraft Passes Major Milestone

NASA's Space Launch System Engine Testing Heats Up

Successful launch puts New Zealand in space race

ENERGY TECH
Curiosity Peels Back Layers on Ancient Martian Lake

Student-Made Mars Rover Concepts Lift Off

Illinois Company Among Hundreds Supporting NASA Mission to Mars

Halos discovered on Mars widen time frame for potential life

ENERGY TECH
California Woman Charged for Trying to Hand Over Sensitive Space Tech to China

A cabin on the moon? China hones the lunar lifestyle

China tests 'Lunar Palace' as it eyes moon mission

China to conduct several manned space flights around 2020

ENERGY TECH
Propose a course idea for the CU space minor

Leading Global Air And Space Law Group Joins Reed Smith

New Horizons for Alexander Gerst

Government space program spending reaches 62B dollars in 2016

ENERGY TECH
Bamboo inspires optimal design for lightness and toughness

Model for 2-D materials based RRAM found

New scaling law predicts how wheels drive over sand

Space junk could destroy satellites, hurt economies

ENERGY TECH
Giant Ringed Planet Likely Cause of Mysterious Eclipses

Viable Spores, DNA Fragments Discovery at ISS Justifies Biosphere's Expansion

Russia thinks microorganisms may be living outside the space station

The race to trace TRAPPIST-1h

ENERGY TECH
A whole new Jupiter with first science results from Juno

First results from Juno show cyclones and massive magnetism

Jupiters complex transient auroras

NASA's Juno probe forces 'rethink' on Jupiter




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement