Subscribe free to our newsletters via your
. 24/7 Space News .




TIME AND SPACE
New method of measuring the mass of supermassive black holes
by Staff Writers
Hertfordshire UK (SPX) Feb 01, 2013


Understanding the formation of the first galaxies, the way galaxies change over time, and the processes that have generated the variety of structures observed in nearby galaxies is one of the most active research areas in astrophysics.

In a letter to Nature, an international team of astronomers, including Marc Sarzi from the University of Hertfordshire, report the exciting discovery of a new way to measure the mass of supermassive black holes in galaxies.

By measuring the speed with which carbon monoxide molecules orbit around such black holes, this new research opens the possibility of making these measurements in many more galaxies than ever before.

Supermassive black holes and galaxies
A black hole is an object so dense that its gravity prevents anything, including light, from escaping. Supermassive black holes can be as much as a million to a billion times more massive than our Sun, and it is believed that most, if not all galaxies including the Milky Way, contain supermassive black holes at their centres - suggesting that the evolution of black holes and galaxies is very tightly linked.

Understanding the formation of the first galaxies, the way galaxies change over time, and the processes that have generated the variety of structures observed in nearby galaxies is one of the most active research areas in astrophysics.

Intriguing link
Marc Sarzi, from the University of Hertfordshire's Centre for Astrophysics Research, said: "There is an intriguing link between the mass of supermassive black holes and the mass of their host galaxies, but this is based only on quite a small number of estimates.

Until now only three methods were used to measure the mass of supermassive black holes and these only work on relatively nearby galaxies. With this new technique, we have been able to show that we can measure black hole masses much further out in the universe, which will help understanding the role that supermassive black holes played during the formation of galaxies."

Super-sharp telescope images
Tim Davis, lead author of the paper and from the European Southern Observatory, commented: "We observed carbon monoxide molecules in the galaxy we were monitoring using the Combined Array for Research in Millimeter-wave Astronomy (CARMA) telescope.

With its super-sharp images we were able to zoom right into the centre of the galaxy and observe the gas whizzing around the black hole. This gas moves at a speed which is determined by the black-hole's mass, and the distance from it. By measuring the velocity of the gas at each position, we can measure the mass of the black hole."

The CARMA observations were rather challenging, but the new ALMA (Atacama Large Millimeter/submillimeter Array) telescope currently being built in Chile will allow this new technique to be applied more routinely to hundreds of galaxies in the nearby Universe.

.


Related Links
University of Hertfordshire
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TIME AND SPACE
Black holes growing faster than expected
Melbourne, Australia (SPX) Jan 22, 2013
Astronomers from Swinburne University of Technology in Australia have discovered how supermassive black holes grow - and it's not what was expected. For years, scientists had believed that supermassive black holes, located at the centres of galaxies, increased their mass in step with the growth of their host galaxy. However, new observations have revealed a dramatically different behaviour. ... read more


TIME AND SPACE
US, Europe team up for moon fly-by

Russia to Launch Lunar Mission in 2015

US, Europe team up for moon fly-by

Mission would drag asteroid to the moon

TIME AND SPACE
AAS Division For Planetary Sciences Issues Statement On Mars 2020 Program

Curiosity Maneuver Prepares for Drilling

Ridges on Mars suggest ancient flowing water

Changes on Mars Caused by Seasonal Thawing of CO2

TIME AND SPACE
Sierra Nevada Corporation and Lockheed Martin Space Systems Company Partner On Dream Chaser Programs

NASA Launches Next-Gen Communications Satellite

NASA Takes Strides Forward to Launch Americans from U.S. Soil

Iran Takes First Step to Send Man to Space

TIME AND SPACE
Reshuffle for Tiangong

China to launch 20 spacecrafts in 2013

Mr Xi in Space

China plans manned space launch in 2013: state media

TIME AND SPACE
NASA to Send Inflatable Pod to International Space Station

ISS to get inflatable module

ESA workhorse to power NASA's Orion spacecraft

Competition Hopes To Fine Tune ISS Solar Array Shadowing

TIME AND SPACE
Site of space rocket launch to become home of S. Korea's space program

Payload preps continue for first Ariane 5 flights of 2013

NASA Wallops Rocket Mission January 29 Prepping for Future Projects

Russia's Troubled Rocket Cleared for Launch

TIME AND SPACE
TW Hydrae: There's more to astronomers' favorite planetary nursery than previously thought

The Origin And Maintenance Of A Retrograde Exoplanet

New Evidence Indicates Auroras Occur Outside Our Solar System

Glitch has space telescope shut down

TIME AND SPACE
NTU research embraces laser and sparks cool affair

Bioinspired fibers change color when stretched

Stanford Researchers Break Million-core Supercomputer Barrier

Scientists trick iron-eating bacteria into breathing electrons instead




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement