Subscribe free to our newsletters via your
. 24/7 Space News .




Subscribe free to our newsletters via your




















TECH SPACE
New mechanical metamaterials can block symmetry of motion
by Staff Writers
Austin TX (SPX) Feb 14, 2017


This is an artist's rendering of mechanical metamaterials. Image courtesy Cockrell School of Engineering.

Engineers and scientists at The University of Texas at Austin and the AMOLF institute in the Netherlands have invented the first mechanical metamaterials that easily transfer motion effortlessly in one direction while blocking it in the other, as described in a paper published on Feb. 13 in Nature. The material can be thought of as a mechanical one-way shield that blocks energy from coming in but easily transmits it going out the other side.

The researchers developed the first nonreciprocal mechanical materials using metamaterials, which are synthetic materials with properties that cannot be found in nature.

Breaking the symmetry of motion may enable greater control on mechanical systems and improved efficiency. These nonreciprocal metamaterials can potentially be used to realize new types of mechanical devices: for example, actuators (components of a machine that are responsible for moving or controlling a mechanism) and other devices that could improve energy absorption, conversion and harvesting, soft robotics and prosthetics.

The researchers' breakthrough lies in the ability to overcome reciprocity, a fundamental principle governing many physical systems, which ensures that we get the same response when we push an arbitrary structure from opposite directions. This principle governs how signals of various forms travel in space and explains why, if we can send a radio or an acoustic signal, we can also receive it. In mechanics, reciprocity implies that motion through an object is transmitted symmetrically: If by pushing on side A we move side B by a certain amount, we can expect the same motion at side A when pushing B.

"The mechanical metamaterials we created provide new elements in the palette that material scientists can use in order to design mechanical structures," said Andrea Alu, a professor in the Cockrell School of Engineering and co-author of the paper. "This can be of extreme interest for applications in which it is desirable to break the natural symmetry with which the displacement of molecules travels in the microstructure of a material."

During the past couple of years, Alu, along with Cockrell School research scientist Dimitrios Sounas and other members of their research team, have made exciting breakthroughs in the area of nonreciprocal devices for electromagnetics and acoustics, including the realization of first-of-their-kind nonreciprocal devices for sound, radio waves and light.

While visiting the institute AMOLF in the Netherlands, they started a fruitful collaboration with Corentin Coulais, an AMOLF researcher, who recently has been developing mechanical metamaterials. Their close interaction led to this breakthrough.

The researchers first created a rubber-made, centimeter-scale metamaterial with a specifically tailored fishbone skeleton design. They tailored its design to meet the main conditions to break reciprocity, namely asymmetry and a response that is not linearly proportional to the exerted force.

"This structure provided us inspiration for the design of a second metamaterial, with unusually strong nonreciprocal properties," Coulais said. "By substituting the simple geometrical elements of the fishbone metamaterial with a more intricate architecture made of connected squares and diamonds, we found that we can break very strongly the conditions for reciprocity, and we can achieve a very large nonreciprocal response."

The material's structure is a lattice of squares and diamonds that is completely homogeneous throughout the sample, like an ordinary material. However, each unit of the lattice is slightly tilted in a certain way, and this subtle difference dramatically controls the way the metamaterial responds to external stimuli.

"The metamaterial as a whole reacts asymmetrically, with one very rigid side and one very soft side," Sounas said. "The relation between the unit asymmetry and the soft side location can be predicted by a very generic mathematical framework called topology. Here, when the architectural units lean left, the right side of the metamaterial will be very soft, and vice-versa."

When the researchers apply a force on the soft side of the metamaterial, it easily induces rotations of the squares and diamonds within the structure, but only in the near vicinity of the pressure point, and the effect on the other side is small. Conversely, when they apply the same force on the rigid side, the motion propagates and is amplified throughout the material, with a large effect at the other side. As a result, pushing from the left or from the right results in very different responses, yielding a large nonreciprocity even for small applied forces.

The team is looking forward to leveraging these topological mechanical metamaterials for various applications, optimizing them, and carving devices out of them for applications in soft robotics, prosthetics and energy harvesting.

Research paper


Comment on this article using your Disqus, Facebook, Google or Twitter login.

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

.


Related Links
University of Texas at Austin
Space Technology News - Applications and Research






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECH SPACE
ANU scientists make new high-tech liquid materials
Canberra (SPX) Feb 10, 2017
Scientists at The Australian National University (ANU) have controlled wave-generated currents to make previously unimaginable liquid materials for new technological innovations, including techniques to manipulate micro-organisms. The new kind of dynamic material could be revolutionary, similar to other materials created in recent decades that have been used for invisibility cloaking, supe ... read more


TECH SPACE
NASA to develop oxygen recovery technologies for future deep space missions

Art and space enter a new dimension

Russia's first private space tourism craft flight test set for 2020

Next SpaceX mission will deliver slew of experiment payloads to ISS

TECH SPACE
Airbus Safran Launchers: 77th consecutive successful launch for Ariane 5

SpaceX blasts off cargo from historic NASA launchpad

SpaceX aborts launch after 'odd' rocket engine behavior

Airbus Safran Launchers: 77th consecutive successful launch for Ariane 5

TECH SPACE
Opportunity passes 44 kilometers of surface travel after 13 years

Scientists say Mars valley was flooded with water not long ago

Scientists shortlist three landing sites for Mars 2020

ISRO saves its Mars mission spacecraft from eclipse

TECH SPACE
Chinese cargo spacecraft set for liftoff in April

China looks to Mars, Jupiter exploration

China's first cargo spacecraft to leave factory

China launches commercial rocket mission Kuaizhou-1A

TECH SPACE
Iridium Announces Target Date for Second Launch of Iridium NEXT

Italy, Russia working closely on Mars exploration, Earth monitoring satellites

NASA seeks partnerships with US companies to advance commercial space technologies

A New Space Paradigm

TECH SPACE
Most stretchable elastomer for 3-D printing

After 15 years, SABER on TIMED Still Breaks Ground from Space

ANU scientists make new high-tech liquid materials

Curtiss-Wright offers COTS Module for measuring microgravity acceleration

TECH SPACE
Exoplanetary moons formed by giant impacts could be detected by Kepler

The heart of a far-off star beats for its planet

Astronomy team finds more than 100 exoplanet candidates

Possibility of Silicon-Based Life Grows

TECH SPACE
NASA receives science report on Europa lander concept

New Horizons Refines Course for Next Flyby

It's Never 'Groundhog Day' at Jupiter

Public to Choose Jupiter Picture Sites for NASA Juno




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News








The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement