. 24/7 Space News .
NANO TECH
New material resembling a metal nanosponge could reduce computer energy consumption
by Staff Writers
Barcelona, Spain (SPX) Jul 18, 2017


A metal nanosponge is shown under the microscope. Image courtesy Jordi Sort and UAB.

In order to store information in the conventional magnetic memories of electronic devices, the materials' small magnetic domains work by pointing up or down according to the magnetic fields. To generate these fields it is necessary to produce electric currents, but these currents heat up materials and a large amount of energy is spent cooling them. Practically 40% of the electrical energy going into computers (or "Big Data" servers) dissipates as heat.

In 2007, French scientists observed that when the magnetic materials are put into ultra-thin layers and voltage is applied, the amount of current and energy needed to point the magnetic domains was reduced by 4%. However, this slight reduction was not significant enough to be applied to devices.

A research team directed by Jordi Sort, ICREA researcher and lecturer of the Department of Physics at the Universitat Autonoma de Barcelona, with the collaboration of the Catalan Institute for Nanoscience and Nanotechnology (ICN2), has searched for a solution based on the magnetic properties of a new nanoporous material which could increase this surface.

The new material, which is featured this week in the Advanced Functional Materials journal, consists in nanoporous copper and nickel alloy films, organised in a way that the interior forms surfaces and holes similar to that of the inside of a sponge, but with a separation between pores of only 5 or 10 nanometres. In other words, the walls of the pores contain enough room for only a few dozen atoms.

"There are many researchers applying nanoporous materials to improve physical-chemical processes, such as in the development of new sensors, but we studied what these materials could provide to electromagnetism", Jordi Sort explains.

"The nanopores found on the inside of nanoporous materials offer a great amount of surface. With this vast surface concentrated in a very small space we can apply the voltage of a battery and enormously reduce the energy needed to orientate the magnetic domains and record data. This represents a new paradigm in the energy saving of computers and in computing and handling magnetic data in general", says Jordi Sort.

UAB researchers have built the first prototypes of nanoporous magnetic memories based on copper and nickel alloys (CuNi) and have reached very satisfactory results, with a reduction of 35% in magnetic coercivity, a magnitude related to the energy consumption needed to reorientate the magnetic domains and record data.

In these first prototypes, researchers applied the voltage using liquid electrolytes, but are now working on solid materials which could help implement the devices in the market.

According to Jordi Sort, "Implementing this material into the memories of computers and mobile devices can offer many advantages, mainly in direct energy saving for computers and considerable increase in the autonomy of mobile devices".

The development of new nanoelectronic devices with improved energy efficiency is one of the strategic lines included in the European Union's Horizon 2020 programme.

According to some estimations, if electric current is completely substituted by voltage in data processing systems, energy costs can be reduced by a factor of 1/500. In fact, computer servers of large companies such as Google and Facebook are located underwater, or in Nordic countries in which temperatures are very low, with the aim of reducing heating and energy consumption.

Research paper

NANO TECH
How do you build a metal nanoparticle?
Pittsburgh PA (SPX) Jul 18, 2017
Although scientists have for decades been able to synthesize nanoparticles in the lab, the process is mostly trial and error, and how the formation actually takes place is obscure. However, a study recently published in Nature Communications by chemical engineers at the University of Pittsburgh's Swanson School of Engineering explains how metal nanoparticles form. "Thermodynamic Stability ... read more

Related Links
Universitat Autonoma de Barcelona
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

NANO TECH
NASA Awards Mission Systems Operations Contract

Counting calories in space

NASA Offers Space Station as Catalyst for Discovery in Washington

As the world embraces space, the 50 year old Outer Space Treaty needs adaptation

NANO TECH
Hypersonic Travel Possibility Heats Up Massively After New Material Discovery

ISRO Develops Ship-Based Antenna System to Track Satellite Launches

Aerojet Rocketdyne tests Advanced Electric Propulsion System

After two delays, SpaceX launches broadband satellite for IntelSat

NANO TECH
Curiosity Mars Rover Begins Study of Ridge Destination

For Moratorium on Sending Commands to Mars, Blame the Sun

Tributes to wetter times on Mars

Opportunity will spend three weeks at current location due to Solar Conjunction

NANO TECH
China develops sea launches to boost space commerce

Chinese satellite Zhongxing-9A enters preset orbit

Chinese Space Program: From Setback, to Manned Flights, to the Moon

Chinese Rocket Fizzles Out, Puts Other Launches on Hold

NANO TECH
LISA Pathfinder: bake, rattle and roll

ASTROSCALE Raises a Total of $25 Million in Series C Led by Private Companies

Korean Aerospace offices raided in anti-corruption probe

Iridium Poised to Make Global Maritime Distress and Safety System History

NANO TECH
Japanese engineers develop headset-less VR system

Spacepath Communications Announces Innovative Frequency Converter Systems

Sorting complicated knots

Nature-inspired material uses liquid reinforcement

NANO TECH
Molecular Outflow Launched Beyond Disk Around Young Star

Big, shape-shifting animals from the dawn of time

A New Search for Extrasolar Planets from the Arecibo Observatory

More to Life Than the Habitable Zone

NANO TECH
Juno spots Jupiter's Great Red Spot

New Horizons Video Soars over Pluto's Majestic Mountains and Icy Plains

New evidence in support of the Planet Nine hypothesis

Juno Completes Flyby over Jupiter's Great Red Spot









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.