Subscribe to our free daily newsletters
. 24/7 Space News .




Subscribe to our free daily newsletters



TECH SPACE
New insights into nanocrystal growth in liquid
by Staff Writers
Richland WA (SPX) Sep 22, 2017


Mica the mineral flakes off in fine sheets.

Many seashells, minerals, and semiconductor nanomaterials are made up of smaller crystals, which are assembled together like the pieces of a puzzle. Now, researchers have measured the forces that cause the crystals to assemble, revealing an orchestra of competing factors that researchers might be able to control.

The work has a variety of implications in both discovery and applied science. In addition to providing insights into the formation of minerals and semiconductor nanomaterials, it might also help scientists understand soil as it expands and contracts through wetting and drying cycles. In the applied realm, researchers might use the principles to develop new materials with unique properties for energy needs.

The results, published in the Proceedings of the National Academy of Sciences in July, describe how the arrangement of the atoms in the crystals creates forces that pull them together and align them for docking. The study reveals how the attraction becomes stronger or weaker as water is heated or salt is added, both of which are common processes in the natural world.

The multinational team, led by chemists Dongsheng Li and Jaehun Chun from the Department of Energy's Pacific Northwest National Laboratory, explored the attractive forces between two crystal particles made from mica. A flaky mineral that is commonly used in electrical insulation, this silicon-based mineral is well-studied and easy to work with because it chips off in flat pieces with nearly-perfect crystal surfaces.

Forces and faces
Crystallization often occurs through assembly of multi-faceted building blocks: some faces on these smaller crystals line up better with others, like Lego blocks do. Li and Chun have been studying a specific crystallization process called oriented attachment. Among other distinguishing characteristics, oriented attachment occurs when smaller subunits of fledgling crystals align their best matching faces before clicking together.

The process creates various nonlinear forms: nanowires with branches, lattices that look like complicated honeycombs, and tetrapods - tiny structures that look like four-armed toy jacks. The molecular forces that contribute to this self-assembly are not well understood.

Molecular forces that come into play can attract or repel the tiny crystal building blocks to or from each other. These include a variety of textbook forces such as van der Waals, hydrogen bonding, and electrostatic, among others.

To explore the forces, Li, Chun and colleagues milled flat faces on tiny slabs of mica and put them on a device that measures the attraction between two pieces. Then they measured the attraction while twisting the faces relative to each other. The experiment allowed the mica to be bathed in a liquid that includes different salts, letting them test real-world scenarios.

The difference in this work was the liquid setup. Similar experiments by other researchers have been done dry under vacuum; in this work, the liquid created conditions that better simulate how real crystals form in nature and in large industrial methods. The team performed some of these experiments at EMSL, the Environmental Molecular Sciences Laboratory, a DOE Office of Science User Facility at PNNL.

Twist and salt
One of the first things the team found was that the attraction between two pieces of mica rose and fell as the faces twisted relative to each other, like when trying to make a sandwich out of two flat refrigerator magnets (go on, try it). In fact, the attraction rose and fell every 60 degrees, corresponding with the internal architecture of the mineral, which is almost hexagonal like a honeycomb cell.

Although other researchers more than a decade ago had predicted this cyclical attraction would happen, this is the first time scientists had measured the forces. Knowing the strength of the forces is key to manipulating crystallization in a research or industrial setting.

But other things were abuzz in the mica face-off as well. Between the two surfaces, the liquid environment housed electrically charged ions from salts, normal elements found during crystallization in nature.

The water and the ions formed a somewhat stable layer between the surfaces that partly kept them separated. And as they moved toward each other, the two mica surfaces paused there, balanced between molecular attraction and repulsion by water and ions.

The team also found they could manipulate the strength of that attraction by changing the type of ions, their concentration, and the temperature. Different types of ions and their concentrations changed electrostatic repulsion between the mica surfaces. The size of the ions and how many charges they carried also created more or less space within the meddling layer.

Lastly, higher temperatures increased the strength of the attraction, contrary to how temperature behaves in simpler, less complex scenarios. The researchers built a model of the competing forces that included van der Waals, electrostatic, and hydration forces.

In the future, the researchers say, the principles gleaned from this study can be applied to other materials, which would be calculated for the material of interest. For example, manipulating the attraction might allow researchers to custom-build crystals of desired sizes and shapes and with unique properties. Overall, the work provides insights into crystal growth through nanoparticle assembly in synthetic, biological, and geochemical environments.

Dongsheng Li, Jaehun Chun, Dongdong Xiao, Weijiang Zhou, Huacheng Cai, Lei Zhang, Kevin M. Rosso, Christopher J. Mundy, Gregory K. Schenter, James J. De Yoreo. Trends in mica-mica adhesion reflect the influence of molecular details on long-range dispersion forces underlying aggregation and coalignment, Proc Natl Acad Sci U S A Early Edition July 18, 2017, doi: 10.1073/pnas.1621186114.

TECH SPACE
Sand mining demand outpaces caution and knowledge
East Lansing MI (SPX) Sep 22, 2017
Sand, spanning miles of beaches, carpeting vast oceans and deserts, is a visual metaphor for limitless resources. Yet researchers in this week's journal Science seize another metaphor - sand in an hourglass, marking time running out. Sand is the literal foundation of urban development across the globe, a key ingredient of concrete, asphalt, glass, and electronics. It is cheap and easily ex ... read more

Related Links
Pacific Northwest National Laboratory
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Aussie astronaut calls for establishment of national space agency

Mapping NASA's Space Missions

NASA's New Hubble E-Book Series Dives into the Solar System and Beyond

Tech dreams live or die on startup battlefields

TECH SPACE
What looks good on paper may look good in space

Demonstrator 3 linear aerospike ready to start tests

ISRO to resume satellite launches by December

Mechanisms are Critical to Space Vehicle Flight Success

TECH SPACE
HIAD heat shield material feels the burn during arc jet testing

Devilish Source of Dust in Atmosphere of Earth and Mars

Hope to discover sure signs of life on Mars

3-D Analysis Offers New Info on Martian Climate Change, Age of Polar Caps

TECH SPACE
Mars probe to carry 13 types of payload on 2020 mission

China's cargo spacecraft separates from Tiangong-2 space lab

Work on China's mission to Mars 'well underway'

Chinese company eyes development of reusable launch vehicle

TECH SPACE
Thomas calls for new comprehensive Australian Space Agency at IAC address

AsiaSat 9 Set for Launch from Baikonur on September 29

Lockheed Martin introduces new satellite bus lineup

Bulgaria Sat Wins "Newcomer Satellite Operator of the Year" for 2017

TECH SPACE
Ultra-light aluminum: USU chemist reports breakthrough in material design

Positive, negative or neutral, it all matters: NASA explains space radiation

Dosage formulations for anti-radiation drug being developed

Space radiation is risky business for the human body

TECH SPACE
Scientists propose new concept of terrestrial planet formation

The return of the comet-like exoplanet

New prediction of a detection wavelength for searching phototrophs on exoplanets

Hubble observes pitch black planet

TECH SPACE
Global Aerospace Corporation to present Pluto lander concept to NASA

Solving the Mystery of Pluto's Giant Blades of Ice

Pluto features given first official names

Hibernation Over, New Horizons Continues Kuiper Belt Cruise




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement