. 24/7 Space News .
ENERGY TECH
New flow battery offers lower-cost energy storage
by Staff Writers
Richland WA (SPX) Dec 22, 2015


PNNL researcher Xiaoliang Wei prepares a small demonstration organic flow battery. Image courtesy Pacific Northwest National Laboratory. For a larger version of this image please go here.

Energy storage system owners could see significant savings from a new flow battery technology that is projected to cost 60 percent less than today's standard flow batteries.

The organic aqueous flow battery, described in a paper published in the journal Advanced Energy Materials, is expected to cost $180 per kilowatt-hour once the technology is fully developed. The lower cost is due to the battery's active materials being inexpensive organic molecules, compared to the commodity metals used in today's flow batteries.

"Moving from transition metal elements to synthesized molecules is a significant advancement because it links battery costs to manufacturing rather than commodity metals pricing" said Imre Gyuk, energy storage program manager for the Department of Energy's Office of Electricity Delivery and Energy Reliability (OE), which funded this research.

"The battery's water-based liquid electrolytes are also designed to be a drop-in replacement for current flow battery systems," said PNNL materials scientist Wei Wang, one of the paper's corresponding authors. "Current flow battery owners can keep their existing infrastructure, drain their more expensive electrolytes and replace them with PNNL's electrolytes."

Changing currents
Flow batteries generate power by pumping liquids from external tanks into a central stack. The tanks contain liquid electrolytes that store energy. When energy is needed, pumps move the electrolytes from both tanks into the stack where electricity is produced by an electrochemical reaction.

Both flow and solid batteries, such as the lithium-ion batteries that power most electric vehicles and smartphones today, were invented in the 1970s. Lithium-ion batteries can carry much more energy in a smaller space, making them ideal for mobile uses. The technology gained market acceptance quickly, for both mobile uses like cell phones and larger, stationary uses like supporting the power grid.

Lithium-ion batteries now make up about 70 percent of the world's working, grid-connected batteries, according to data from DOE-OE's Global Energy Storage Database. However issues with performance, safety and lifespan can limit the technology's use for stationary energy storage.

Flow batteries, on the other hand, store their active chemicals separately until power is needed, greatly reducing safety concerns. Vanadium-based flow batteries have become more popular in recent years, especially after PNNL developed a new vanadium battery design in 2011 that increased storage capacity by 70 percent. Three different companies have licensed the technology behind PNNL's vanadium design.

Nearly 79 percent of the world's working flow batteries are vanadium-based, according to data from the Global Energy Storage Database. While vanadium chemistries are expected to be the standard for some time, future flow battery cost reductions will require less expensive alternatives such as organics.

Tried and tested
PNNL's new flow battery features two main electrolytes: a methyl viologen anolyte (negative electrolyte) and a 4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl, or 4-HO-TEMPO catholyte (positive electrolyte). A third, supporting electrolyte carries sodium chloride, whose chloride ions enable the battery to discharge electricity by shuffling electrons in the central stack.

"Using readily available materials makes our all-organic aqueous flow battery more sustainable and environmentally friendly. As a result, it can also make the renewable energy it stores and the power grid it supports greener," Wei said.

To test the new battery design, Wang and his colleagues created a small, 600-milliwatt battery on a lab countertop. They repeatedly charged and then discharged the battery at various electric current densities, ranging from 20 to 100 milliAmperes per square centimeter. The test battery's optimal performance was between 40 and 50 milliAmperes per square centimeter, where about 70 percent of the battery's original voltage was retained. They also found the battery continued to operate well beyond 100 cycles.

Next, the team plans to make a larger version of their test battery that is able to store up to 5 kilowatts of electricity, which could support the peak load of a typical U.S. home. Other ongoing efforts include improving the battery's cycling so it can retain more of its storage capacity longer.

Tianbiao Liu, Xiaoliang Wei, Zimin Nie, Vincent Sprenkle, Wei Wang, "A Total Organic Aqueous Redox Flow Battery Employing Low Cost and Sustainable Methyl Viologen (MV) Anolyte and 4-HO-TEMPO Catholoyte," Advanced Energy Materials, Nov. 30, 2015, DOI: DOI: 10.1002/aenm.201501449.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Pacific Northwest National Laboratory
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
ENERGY TECH
Real-time tracking shows how batteries degrade
London, UK (SPX) Dec 22, 2015
How disposable Lithium batteries degrade during normal use has been tracked in real-time by a UCL-led team using sophisticated 3D imaging, giving a new way to non-invasively monitor performance loss and guide the development of more effective commercial battery designs. The team recently used the same technique to show how rechargeable Lithium-ion batteries fail when they are exposed to ex ... read more


ENERGY TECH
XPRIZE verifies moon express launch contract, kicking off new space race

Gaia's sensors scan a lunar transit

SwRI scientists explain why moon rocks contain fewer volatiles than Earth's

All-female Russian crew starts Moon mission test

ENERGY TECH
New Mars rover findings revealed at American Geophysical Union Conference

Opportunity performs a week of robotic arm at Marathon Valley

Rocks Rich in Silica Present Puzzles for Mars Rover Team

Study finds evidence for more recent clay formation on Mars

ENERGY TECH
Researchers Recall Work on First Rendezvous in Space

NASA Accepting Applications for Future Explorers

China drives global patent applications to new high

Australia seeks 'ideas boom' with tax breaks, visa boosts

ENERGY TECH
Agreement with Chinese Space Tech Lab Will Advance Exploration Goals

China launches new communication satellite

China's indigenous SatNav performing well after tests

China launches Yaogan-29 remote sensing satellite

ENERGY TECH
NASA spacewalk to fix ISS rail car

British astronaut docks with ISS as country cheers debut trip

First Briton to travel to ISS blasts off into space

Tim Peake begins six-month stay on Space Station

ENERGY TECH
SpaceX Falcon 9 launch scrubbed until Monday

Japan to launch X-ray astronomy satellite after 2 months

Scientists Launch NASA Rocket into "Speed Bumps" Above Norway

Soyuz receives the Galileo payload for its December 17 liftoff

ENERGY TECH
Monster planet is 'dancing with the stars'

Exoplanets Water Mystery Solved

Hubble reveals diversity of exoplanet atmosphere

Mystery of missing exoplanet water solved

ENERGY TECH
Scientists create atomically thin boron

Turning rice farming waste into useful silica compounds

Physics of slow microscopic changes in magnetic structures revealed

New metamaterial manipulates sound to improve acoustic imaging









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.