. 24/7 Space News .
INTERNET SPACE
New femto-camera with quadrillion fractions of a second resolution
by Staff Writers
Saint Petersburg, Russia (SPX) Jun 28, 2017


The iridescent picture indicates the occurrence of a spark known as a spark.

Researchers from ITMO University have built a setup for recording holograms of tiny objects like living cells with a femtosecond speed. The new method allows one to reconstruct phase topography of a studied sample according to deformations that emerge in a laser pulse when it passes through the specimen. In comparison to electron microscopes, the device can visualize transparent biological structures without introducing contrast agents. The paper was published in Applied Physics Letters.

Vital activity of living cells is a complex sequence of biochemical reactions and physical processes; many of them take place with high temporal resolution. To register such rapid transformations, scientists need very accurate and much more faster equipment. Biological tissue can be studied with an electron microscope, but this method requires introducing a special dye in the sample. The dye makes cells contrast, although it may affect their metabolism. Digital holographic microscopes can cope with this drawback, but have low spatial resolution.

The new camera created by ITMO scientists can register fast processes in transparent specimens and allows one to increase the resolution of images in a wide range. The device records phase deformations of ultrashort, or femtosecond, laser pulses, that emerge when the light passes through the studied sample. The phase images, or holograms, will help explore cells for better understanding mechanisms of autoimmune, oncological, neurodegenerative diseases, as well as monitoring cells during surgical interventions like, for example, cancer therapy.

"Our device will help biologists and genetic engineers track what is happening inside a living cell with a resolution of about 50 femtoseconds - this is enough to resolve many biochemical reactions. Theoretically, the camera can even capture an electron jumping to another orbit. However, that is important, now we can study viability of cells not passively, but when initiating certain processes.

For example, heating or transferring viruses, cells and its structures in three-dimensional space using femtosecond laser radiation. The device also supports tracking cell states during changing pH, adding and editing of genetic material," comments Arseny Chipegin, lead author of the paper and researcher at the Laboratory of Digital and Display Holography at ITMO University.

For the analysis, a femtosecond laser beam is split in three. The first beam has a 95% energy and starts the process, two other beams are used for diagnostics. The second, known as object beam, passes through the specimen. The third, reference beam, is deflected by mirrors and goes around. The rays meet again behind the sample, where they form an interference pattern of bright bands. The strips emerge when crests of light waves overlap and amplify each other.

By adjusting the position of the mirrors, the scientists delay the reference beam, forcing it to meet the first one at different times. In other words, the second beam scans the one that passes through the sample. Every collision of the beams is recorded on a subhologram. A fast computer algorithm compiles all the subholograms in a series.

As experimental objects, the researchers used a spark from focusing an intense laser pulse, and a special glass with submicron inclusions. In both cases, the physicists could quickly obtain high-quality images with high spatial and temporal resolution.

The device removes one of the most important issues of digital holographic microscopy associated with increasing resolution capability of a system at the stage of recording holograms.

"Technically, we can scale the images dozens of times, setting the magnifying system between the object and the camera. Not only does this enhance resolution, the measurement accuracy grows, too, since the number of interference bands does not change while they visually thin in comparison to the sample. Thus, it is possible to calculate the phase difference between the object and reference beams more precisely," tells Nikolai Petrov, head of the Laboratory of Digital and Display Holography.

According to the scientists, the research will continue, because the developed system is designed to be simpler than many modern microscopes, but has several advantages in speed of recording and processing holograms.

Time-resolved image plane off-axis digital holography (2017), N. V. Petrov, S. E. Putilin, and A. A. Chipegin, Applied Physics Letters

INTERNET SPACE
Ultra-thin camera creates images without lenses
Pasadena CA (SPX) Jun 28, 2017
Traditional cameras - even those on the thinnest of cell phones - cannot be truly flat due to their optics: lenses that require a certain shape and size in order to function. At Caltech, engineers have developed a new camera design that replaces the lenses with an ultra-thin optical phased array (OPA). The OPA does computationally what lenses do using large pieces of glass: it manipulates incomi ... read more

Related Links
ITMO University
Satellite-based Internet technologies


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

INTERNET SPACE
NASA Statement on National Space Council

Don't look down: glass bottom skywalk thrills in China

Silicon-on-Seine: world's biggest tech incubator opens in Paris

India, Portugal Shake Hands on Space Cooperation

INTERNET SPACE
After two delays, SpaceX launches broadband satellite for IntelSat

Aerojet Rocketdyne advocates solar electric propulsion as central element of deep space exploration

Ariane 5 launch proves reliability and flies new fairing

80th consecutive success for Ariane 5 with launch of Hellas Sat, Inmarsat and ISRO

INTERNET SPACE
Mars Rover Opportunity continuing science campaign at Perseverance Valley

The Niagara Falls of Mars once flowed with lava

Russian Devices for ExoMars Mission to Be Ready in Fall 2017

No One Under 20 Has Experienced a Day Without NASA at Mars

INTERNET SPACE
China heavy-lift carrier rocket launch fails: state media

Yuanwang-3 completes ship check mission, ready for Chang'e-5 lunar probe launch

China prepares to launch second heavy-lift carrier rocket

China to launch Long March-5 Y2 in early July

INTERNET SPACE
SES Transfers Capacity from AMC-9 Satellite Following Significant Anomaly

HTS Capacity Lease Revenues to Reach More Than $6 Billion by 2025

Second launch doubles number of Iridium NEXT satellites in orbit to 20

OneWeb inaugurates production line Assembly, Integration, and Test of OneWeb satellites

INTERNET SPACE
NIST 'noise thermometry' yields accurate new measurements of boltzmann constant

SES and MDA Announce First Satellite Life Extension Agreement

Space Debris Mitigation Mission Successfully Launched on June 23rd, 2017

True romance in the air at Tokyo virtual reality show

INTERNET SPACE
Extreme Atmosphere Stripping May Limit Exoplanets' Habitability

Complex Organic Molecules Found On "Space Hamburger"

Why Does Microorganism Prefer Meager Rations Over Rich Ones

NASA diligently tracks microbes inside the International Space Station

INTERNET SPACE
Mid-infrared images from the Subaru telescope extend Juno spacecraft discoveries

Earth-based Views of Jupiter to Enhance Juno Flyby

NASA's Juno Spacecraft to Fly Over Jupiter's Great Red Spot July 10

Topsy-Turvy Motion Creates Light-Switch Effect at Uranus









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.