Subscribe free to our newsletters via your
. 24/7 Space News .




CHIP TECH
New device could make large biological circuits practical
by Staff Writers
London, UK (SPX) Nov 25, 2014


Ron Weiss, professor of biological engineering; Domitilla Del Vecchio, associate professor of mechanical engineering; and Deepak Mishra, MIT graduate student in biological engineering. Image courtesy Brian Teague.

Researchers have made great progress in recent years in the design and creation of biological circuits -- systems that, like electronic circuits, can take a number of different inputs and deliver a particular kind of output. But while individual components of such biological circuits can have precise and predictable responses, those outcomes become less predictable as more such elements are combined.

A team of researchers at MIT has now come up with a way of greatly reducing that unpredictability, introducing a device that could ultimately allow such circuits to behave nearly as predictably as their electronic counterparts. The findings are published this week in the journal Nature Biotechnology, in a paper by associate professor of mechanical engineering Domitilla Del Vecchio and professor of biological engineering Ron Weiss.

The lead author of the paper is Deepak Mishra, an MIT graduate student in biological engineering. Other authors include recent master's students Phillip Rivera in mechanical engineering and Allen Lin in electrical engineering and computer science.

There are many potential uses for such synthetic biological circuits, Del Vecchio and Weiss explain. "One specific one we're working on is biosensing -- cells that can detect specific molecules in the environment and produce a specific output in response," Del Vecchio says. One example: cells that could detect markers that indicate the presence of cancer cells, and then trigger the release of molecules targeted to kill those cells.

It is important for such circuits to be able to discriminate accurately between cancerous and noncancerous cells, so they don't unleash their killing power in the wrong places, Weiss says. To do that, robust information-processing circuits created from biological elements within a cell become "highly critical," Weiss says.

To date, that kind of robust predictability has not been feasible, in part because of feedback effects when multiple stages of biological circuitry are introduced. The problem arises because unlike in electronic circuits, where one component is physically connected to the next by wires that ensure information is always flowing in a particular direction, biological circuits are made up of components that are all floating around together in the complex fluid environment of a cell's interior.

Information flow is driven by the chemical interactions of the individual components, which ideally should affect only other specific components. But in practice, attempts to create such biological linkages have often produced results that differed from expectations.

"If you put the circuit together and you expect answer 'X,' and instead you get answer 'Y,' that could be highly problematical," Del Vecchio says.

The device the team produced to address that problem is called a load driver, and its effect is similar to that of load drivers used in electronic circuits: It provides a kind of buffer between the signal and the output, preventing the effects of the signaling from backing up through the system and causing delays in outputs.

While this is relatively early-stage research that could take years to reach commercial application, the concept could have a wide variety of applications, the researchers say. For example, it could lead to synthetic biological circuits that constantly measure glucose levels in the blood of diabetic patients, automatically triggering the release of insulin when it is needed.

The addition of this load driver to the arsenal of components available to those designing biological circuits, Del Vecchio says, "could escalate the complexity of circuits you could design," opening up new possible applications while ensuring that their operation is "robust and predictable."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Massachusetts Institute of Technology
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





CHIP TECH
Giving LEDs a cozy, warm glow
Washington DC (SPX) Nov 24, 2014
When the 2014 Nobel Prize in physics was awarded this October to three Japanese-born scientists for the invention of blue light emitting diodes (LEDs), the prize committee declared LED lamps would light the 21st century. Now researchers from the Netherlands have found a novel way to ensure the lights of the future not only are energy efficient but also emit a cozy warmth. "We demonstrated ... read more


CHIP TECH
Young Volcanoes on the Moon

U.K. group to crowd-source funding for moon mission

After Mars, India space chief aims for the moon

China examines the three stages of lunar test run

CHIP TECH
Within Rover's Reach at Mars Target Area 'Alexander Hills'

Mars Exploration Program Director Named

Second Time Through, Mars Rover Examines Chosen Rocks

Mars was warm enough for flowing water, but only briefly

CHIP TECH
The International Space Station officially has an espresso machine

Astronauts to get 'ISSpresso' coffee machine

Tencent looks to the final travel frontier

ESA Commissions Airbus As contractor For Orion Service Module

CHIP TECH
China expects to introduce space law around 2020

China launches new remote sensing satellite

China publishes Earth, Moon photos taken by lunar orbiter

China plans to launch about 120 applied satellites

CHIP TECH
Soyuz docks at Space Station; Expedition 42 joins crew

Italy's first female astronaut heads to ISS in Russian craft

Space station gets zero-gravity 3-D printer

NASA Commercial Crew Partners Continue System Advancements

CHIP TECH
Elon Musk unveils 'drone ship' and 'x-wing' fins for rockets via Twitter

Russian Rocket Supply for Satellites Launches Continues

China launches Yaogan-24 remote sensing satellite

Soyuz Installed at Baikonur, Expected to Launch Wednesday

CHIP TECH
Hot, Super-Earths Help Track Water-Rich Atmospheres

How to estimate the magnetic field of an exoplanet?

Follow the Dust to Find Planets

NASA's TESS mission cleared for next development phase

CHIP TECH
U.S. supplies Ukraine with counter-mortar radar systems

Versatile bonding for lightweight components

Cloaking device hides across continuous range of angles

A new approach to the delivery of satellites to orbit




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.