Subscribe to our free daily newsletters
. 24/7 Space News .

Subscribe to our free daily newsletters

New catalytic converter composite reduces rare earth element usage
by Staff Writers
Kumamoto, Japan (SPX) Jun 08, 2017

A newly developed catalyst from Japan, CeO2/MnFeOy, has both fast release and large storage capabilities for oxygen. Its high performance in the converting rate of NOx, CO, and total hydrocarbon to less harmful materials was comparable to a reference catalyst despite using 30 percent less of the rare earth element, Ce. Adapted with permission from Machida, M.; Ueno, M.; Omura, T.; Kurusu, S.; Hinokuma, S.; Nanba, T.; Shinozaki, O. and Furutani, H., CeO2-Grafted Mn-Fe Oxide Composites as Alternative Oxygen-Storage Materials for Three-Way Catalysts: Laboratory and Chassis Dynamometer Tests, Industrial and Engineering Chemistry Research, American Chemical Society (ACS), 2017, 56, 3184-3193. DOI: 10.1021/acs.iecr.6b04468. Copyright 2017 American Chemical Society. Image courtesy Professor Masato Machida.

Automobiles are facing increasingly strict emissions regulations in an effort to reduce the amount of harmful air pollutants that are released into the environment. In Japan, for example, the current emissions standards for NOx and nonmethane hydrocarbons are less than 0.05 g/km. Currently, one method of reducing harmful emissions is with a high-performance, three-way catalytic (TWC) converter. This device reduces harmful nitrogen oxides to nitrogen and oxygen, oxidizes carbon monoxide to carbon dioxide, and oxidizes unburnt hydrocarbons to carbon dioxide and water.

However, it requires the use of the rare-earth element Cerium (Ce), which is increasing in price and can suffer from supply problems. Professor Masato Machida from Kumamoto University, Japan has been researching ways to reduce the amount of Ce used in catalytic converters and even find an alternative material to replace it.

In their most recent attempt to reduce the amount of Ce in their experimental catalyst, Professor Machida and collaborators from Japan's National Institute of Advanced Industrial Science and Technology (AIST) grafted cerium oxide to MnFeOy (CeO2/MnFeOy), and compared their new catalyst with two reference catalysts, CeO2/Fe2O3 and CeO2/Mn2O3.

Upon assessing the oxygen-release profiles through carbon monoxide temperature-programmed reduction (CO-TPR), the researchers found that even though CeO2/Mn2O3 exhibited oxygen release rates greater than CeO2/MnFeOy between ~350 to ~550 degrees Celsius, the experimental catalyst started releasing at the lowest possible temperature. This provided evidence that oxygen release was improved by both combining Fe2O3 and Mn2O3, and grafting CeO2 to the surface.

The oxygen storage capacity (OSC) was also found to improve with the addition of CeO2, which supports evidence of its oxygen gateway effect. The researchers believe that this was due to an increase in efficiency when the two oxygen-storage materials are brought together. Most importantly, however, is the TWCs ability to buffer variations in the air-to-fuel (A/F) ratio during fuel-rich and fuel-lean exhausts.

For this experiment, Pd/A2O3 was used as the reference against the CeO2/MnFeOy experimental catalyst. The experimental catalyst was found to provide a pronounced buffering effect, whereas the reference catalyst had none. Furthermore, the buffering effect was found to increase as variations in the A/F frequency increased. This was considered to be due to the high oxygen release rate of CeO2 in the early stages of the experiment.

The researchers then put their new catalyst to the test in conditions that more closely resembled the real world. Using the Japanese standard JC08 (hot start) mode for gasoline engines, they developed two (reference and experimental) real-sized honeycomb catalysts and compared their performance using a four cylinder, 1339 cc, gasoline engine on a chassis dynamometer.

The experimental catalyst was a 1:2 wt ratio of 1 wt% Rh-loaded CeO2/MnFeOy and 2.5 wt% Pd/A2O3, and the reference catalyst was a mixture of 1 wt% Rh/CeO2 and Pd/A2O3. The experimental catalyst used 30% less CeO2 than the reference thereby reducing the need for the rare earth metal.

The tests of the full sized catalytic converters revealed that the conversion rate of total hydrocarbons (THC) for both converters is very high and relatively consistent throughout the 20 minute test, and the reference catalyst performs slightly better overall. Conversion rates for CO and NOx vary greatly with engine speed, acceleration, and deceleration for both catalysts, and the differences between the two catalysts are very small. Despite the 30% reduction in CeO2, the experimental catalyst performed very similar to the reference catalyst.

"Our new catalyst shows great promise and we hope that we can find a way to increase performance, particularly at lower temperatures," said Professor Machida. "CeO2-ZrO2 works well for oxygen storage and release at high reaction rates, and we are currently working on creating a composite with it and the MnFeOy oxygen reservoir. We hope to be able to improve catalyst performance and reduce the amount of expensive rare earth elements used at the same time."

Machida, M.; Ueno, M.; Omura, T.; Kurusu, S.; Hinokuma, S.; Nanba, T.; Shinozaki, O. and Furutani, H., CeO2-Grafted Mn-Fe Oxide Composites as Alternative Oxygen-Storage Materials for Three-Way Catalysts: Laboratory and Chassis Dynamometer Tests, Industrial and Engineering Chemistry Research, American Chemical Society (ACS), 2017, 56, 3184-3193. DOI: 10.1021/acs.iecr.6b04468

Bamboo inspires optimal design for lightness and toughness
Sapporo, Japan (SPX) Jun 01, 2017
The spatial distribution of fibers in hollow bamboo cylinders is optimized to reinforce flexural rigidity, a new finding that sheds light on biomimetic approaches in the development of materials. Light and tough, bamboo is widely used as a natural, functional material in Japan and other Asian countries. Bamboo is light because of its hollow structure, which allows the plant to grow faster ... read more

Related Links
Kumamoto University
Space Technology News - Applications and Research

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once

credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly

paypal only

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

Russia on the Way to Adopt New Program on Development of Space Centers

Astronauts return after marathon ISS mission

From 2D to 3D, Space Station Microscope Gets an Upgrade

Studying Flame Behavior in Microgravity with a Solid "High-Five"

Ariane 5 launches its heaviest telecom payload

SpaceX blasts off cargo using recycled spaceship

Ariane 5 launches its first all-electric satellite

India launches GSLV in heavy lift configuation

Curiosity Peels Back Layers on Ancient Martian Lake

Student-Made Mars Rover Concepts Lift Off

Illinois Company Among Hundreds Supporting NASA Mission to Mars

Halos discovered on Mars widen time frame for potential life

California Woman Charged for Trying to Hand Over Sensitive Space Tech to China

A cabin on the moon? China hones the lunar lifestyle

China tests 'Lunar Palace' as it eyes moon mission

China to conduct several manned space flights around 2020

Propose a course idea for the CU space minor

Leading Global Air And Space Law Group Joins Reed Smith

New Horizons for Alexander Gerst

Government space program spending reaches 62B dollars in 2016

Bamboo inspires optimal design for lightness and toughness

New sound diffuser is 10 times thinner than existing designs

Mitsubishi Electric Completes New Satellite Component Production Facility

BAE Systems, Helios to collaborate on liquid armor

Citizen scientists uncover a cold new world near sun

Giant Ringed Planet Likely Cause of Mysterious Eclipses

New Collaboration with Jodrell Bank Observatory for SETI

Viable Spores, DNA Fragments Discovery at ISS Justifies Biosphere's Expansion

A whole new Jupiter with first science results from Juno

First results from Juno show cyclones and massive magnetism

Jupiters complex transient auroras

NASA's Juno probe forces 'rethink' on Jupiter

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement