Subscribe to our free daily newsletters
. 24/7 Space News .




Subscribe to our free daily newsletters



ENERGY TECH
New breakthrough in battery charging technology
by Staff Writers
Ulsan, South Korea (SPX) May 03, 2017


This is a schematic representation of the monolithically integrated SiPV-LIB device and the electrochemical performance of the bipolar LIB. Image courtesy UNIST.

A team of researchers, affiliated with UNIST has developed a single-unit, photo-rechargeable portable power source based on high-efficiency silicon solar cells and lithium-ion batteries (LIBs). This newly-developed power source is designed to work under sunlight and indoor lighting, allowing users to power their portable electronics anywhere with access to light. In addition, the new device could power electric devices even in the absence of light.

In this work, the team of Professor Sang-Young Lee and Professor Kwanyoung Seo of Energy and Chemical Engineering at UNIST presented a new class of monolithically integrated, portable PV-battery systems (denoted as 'SiPV-LIBs') based on miniaturized crystalline Si photovoltaics (c-Si PVs) and printed solid-state lithium-ion batteries (LIBs). The device uses a thin-film printing technique, in which the solid-state LIB is directly printed on the high-efficiency c-Si PV module.

"This device provides a solution to fix both the energy density problem of batteries and the energy storage concerns of solar cells," says Professor Lee. "More importantly, batteries have relatively high power and energy densities under direct sunlight, which demonstrates its potential application as a solar-driven infinite energy conversion/storage system for use in electric vehicles and portable electronics."

According to the research team, this single-unit PV-LIB device exhibits exceptional photo-electrochemical performance and design compactness that lie far beyond those achievable by conventional PVs or LIBs alone. It also displays unprecedented improvements in photo-charging (rapid charging in less than 2 min with a photo-electric conversion/storage efficiency of 7.61%).

In the study, the research team fabricated a solid-state LIB with a bipolar cell configuration directly on the aluminium (Al) electrode of a c-Si PV module through an in-series printing process. To enable the seamless architectural/electrical connection of the two different energy systems, the Al metal layer is simultaneously used as a current collector of the LIB, as well as an electrode for solar cells. This allows the battery to be charged without the loss of energy.

Professor Seo and his team have successflly implemented lossless c-Si PV modules by designing rear electrode-type solar cells. Using single-junction solar cells to fabricate solar cell modules may cause energy loss, which can be prevented by the rear electrode-type design. They also simplified the manufacturing process, using the small solar cell arragements formed on a single Si substrate substrate.

In the study, Professor Lee and his research team connected the device to various portable electronics to explore its practical use. They fabricated a monolithically integrated smartcard by inserting the SiPV-LIB device into a pre-cut credit card. Then, electric circuits were drawn on the back of the credit card using a commercial Ag pen to connect the SiPV-LIB device with an LED lamp. The SiPV-LIB device was also electrically connected with a smartphone or MP3 player and its potential application as a supplementary portable power source was explored under sunlight illumination.

The SiPV-LIB device was capable of fully charging under sunlight illumination after only 2 min. It also showed decent photo-rechargeable electric energy storage behaviour even at a high temperature of 60 C and even at an extremely low light intensity of 8 mWcm-2, which corresponds to the intensity in a dimly-lit living room.

"The SiPV-LIB device presented herein shows great potential as a photo-rechargeable mobile power source that will play a pivotal role in the future era of ubiquitous electronics," says Professor Lee.

The results of the study will be featured on the front cover of the April 2017 issue of the world-renowned journal Energy and Environmental Science (EES). This work has been supported by the Basic Research Program and the Wearable Platform Materials Technology Center through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (MSIP). It was also supported by the Development Program of the Korea Institute of Energy Research (KIER).

Han-Don Um, et al., "Monolithically integrated, photo-rechargeable portable power sources based on miniaturized Si solar cells and printed solid-state lithium-ion batteries," Energy and Environmental Science, (2017).

ENERGY TECH
Freezing lithium batteries may make them safer and bendable
New York, NY (SPX) Apr 27, 2017
Yuan Yang, assistant professor of materials science and engineering at Columbia Engineering, has developed a new method that could lead to lithium batteries that are safer, have longer battery life, and are bendable, providing new possibilities such as flexible smartphones. His new technique uses ice-templating to control the structure of the solid electrolyte for lithium batteries that are used ... read more

Related Links
Ulsan National Institute of Science and Technology(UNIST)
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
AGU journal commentaries highlight importance of Earth and space science research

NASA spacesuits over budget, tight on timeline: audit

'Better you than me,' Trump tells record-breaking astronaut

Lunar, Martian Greenhouses Designed to Mimic Those on Earth

ENERGY TECH
New Russian Medium-Class Carrier Rocket Could Compete With SpaceX's Falcon

RSC Energia, Boeing Hammer Out a Deal on Sea Launch Project

India seeks status as a major space power with more satellite launches

India to Launch Carrier Rocket With Higher Payload Capacity in May

ENERGY TECH
How Old are Martian Gullies

Opportunity Nears 'Perseverance Valley'

Engineers investigate simple, no-bake recipe to make bricks on Mars

SwRI-led team discovers lull in Mars' giant impact history

ENERGY TECH
China's cargo spacecraft completes in-orbit refueling

China courts international coalition set up to promote space cooperation

Commentary: Innovation drives China's space exploration

Macao marks 2nd China Space Day with astronaut sharing space experience

ENERGY TECH
ViaSat-2 Satellite to Launch on June 1

ESA boosting its Argentine link with deep space

Arianespace, Intelsat and SKY Perfect JSAT sign a new Launch Services Agreement, for Horizons 3e

Airbus and Intelsat team up for more capacity

ENERGY TECH
Russian scientists create new system of concrete building structures

New organic lasers one step closer to reality

First luminescent molecular system with a lower critical solution temperature

Control of molecular motion by metal-plated 3-D printed plastic pieces

ENERGY TECH
Research Center A Hub For Origins of Life Studies

ISS investigation aims to identify unknown microbes in space

'Iceball' Planet Discovered Through Microlensing

'On Verge of Most Profound Discovery Ever,' NASA Tells US Congress

ENERGY TECH
ALMA investigates 'DeeDee,' a distant, dim member of our solar system

Nap Time for New Horizons

Hubble spots auroras on Uranus

Cold' Great Spot discovered on Jupiter




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement