Subscribe free to our newsletters via your
. 24/7 Space News .




STELLAR CHEMISTRY
New, Ultrathin Optical Devices Shape Light in Exotic Ways
by Staff Writers
Pasadena CA (JPL) Sep 02, 2015


This schematic drawing shows how a "metasurface" can generate and focus radially polarized light. Image courtesy Amir Arbabi/Faraon Lab/Caltech. For a larger version of this image please go here.

Researchers have developed innovative flat, optical lenses as part of a collaboration between NASA's Jet Propulsion Laboratory and the California Institute of Technology, both in Pasadena, California. These optical components are capable of manipulating light in ways that are difficult or impossible to achieve with conventional optical devices.

The new lenses are not made of glass. Instead, silicon nanopillars are precisely arranged into a honeycomb pattern to create a "metasurface" that can control the paths and properties of passing light waves. Applications of these devices include advanced microscopes, displays, sensors, and cameras that can be mass-produced using the same techniques used to manufacture computer microchips.

"These flat lenses will help us to make more compact and robust imaging assemblies," said Mahmood Bagheri, a microdevices engineer at JPL and co-author of a new Nature Nanotechnology study describing the devices.

"Currently, optical systems are made one component at a time, and the components are often manually assembled," said Andrei Faraon, an assistant professor of applied physics and materials science at Caltech, and the study's principal investigator. "But this new technology is very similar to the one used to print semiconductor chips onto silicon wafers, so you could conceivably manufacture millions of systems such as microscopes or cameras at a time."

Seen under a scanning electron microscope, the new metasurfaces that the researchers created resemble a cut forest where only the stumps remain. Each silicon stump, or pillar, has an elliptical cross section, and by carefully varying the diameters of each pillar and rotating them around their axes, the scientists were able to simultaneously manipulate the phase and polarization of passing light.

Phase has to do with the separation between peaks of light waves; light waves in phase with each other combine to produce a single, more powerful wave. Manipulating its phase influences the degree to which a light ray bends, which in turn influences whether an image is in or out of focus. Polarization refers to the way some light waves vibrate only in a particular direction, whereas waves in natural sunlight vibrate in all directions.

Manipulating the polarization of light is essential for the operation of advanced microscopes, cameras and displays; the control of polarization also enables simple gadgets such as 3-D glasses and polarized sunglasses.

"If you think of a modern microscope, it has multiple components that have to be carefully assembled inside," Faraon says. "But with our platform, we can actually make each of these optical components and stack them atop one another very easily using an automated process. Each component is just a millionth of a meter thick, or less than a hundredth of the thickness of a human hair."

Additionally, the new, flat lenses can be used to modify the shape of light beams at will. Semiconductor lasers typically emit into elliptical beams that are really hard to work with, and the new metasurface optical components could replace expensive optical systems used to circularize the beams. The small size of these devices would also allow for more compact systems.

The team is currently working with industrial partners to create metasurfaces for use in commercial devices such as miniature cameras and spectrometers, but a limited number have already been produced for use in optical experiments by collaborating scientists in other disciplines.

The current work was supported by the Caltech/JPL President's and Director's Fund and the Defense Advanced Research Projects Agency (DARPA). Yu Horie was supported by the Department of Energy's Energy Frontier Research Center program and a Japan Student Services Organization fellowship. The device nanofabrication was performed in the Kavli Nanoscience Institute at Caltech. JPL is a division of Caltech.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Jet Propulsion Laboratory
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








STELLAR CHEMISTRY
Taking control of light emission
Boston MA (SPX) May 22, 2015
Researchers have found a way to couple the properties of different two-dimensional materials to provide an exceptional degree of control over light waves. They say this has the potential to lead to new kinds of light detection, thermal-management systems, and high-resolution imaging devices. The new findings - using a layer of one-atom-thick graphene deposited on top of a similar 2-D layer ... read more


STELLAR CHEMISTRY
Russia Gets Ready for New Moon Landing

ASU chosen to lead lunar CubeSat mission

Russia's moon landing plan hindered by financial distress

Research May Solve Lunar Fire Fountain Mystery

STELLAR CHEMISTRY
Opportunity brushes a rock and conducts in-situ studies

ASU instruments help scientists probe ancient Mars atmosphere

What Happened to Early Mars' Atmosphere

Destination Red Planet: Will Billionaires Fund a Private Mars Colony

STELLAR CHEMISTRY
In Virginia, TechShop lets 'makers' tinker, innovate

New Russian Spaceship to Be Ready Ahead of Schedule

Annoying? US 'That Kissed the Moon' Has to Pay Russia for Space Flights

Chinese tourists unfazed by currency fall, market turmoil

STELLAR CHEMISTRY
Progress for Tiangong 2

China rocket parts hit villager's home: police, media

China's "sky eyes" help protect world heritage Angkor Wat

China's space exploration potential has US chasing its own tail

STELLAR CHEMISTRY
Soyuz rocket with three astronauts launches towards ISS

First Dane in space begins long trip to repositioned ISS

Soyuz Heads to Space Station with New Crew

ISS Crew Redocks Soyuz Spacecraft

STELLAR CHEMISTRY
SpaceX delays next launch after blast

Proton-M Brings Satellite Into Orbit for First Time Since May Accident

US Launches Atlas V Rocket With Navy Communications Satellite After Delay

FCube facility enters operations with fueling of Soyuz Fregat upper stage

STELLAR CHEMISTRY
Distant planet's interior chemistry may differ from our own

Earth's mineralogy unique in the cosmos

A new model of gas giant planet formation

Planetary pebbles were building blocks for the largest planets

STELLAR CHEMISTRY
GSAT-6A's big antenna deployed by ISRO

Record-high pressure reveals secrets of matter

Starshade identifies celestial objects at McMath-Pierce Solar Telescope

US Needs to Upgrade Old Radars to Detect Russian Missiles - Carter




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.