. 24/7 Space News .
CHIP TECH
New UC Riverside research advances spintronics technology
by Staff Writers
Riverside CA (SPX) Feb 27, 2018

illustration only

Engineers at the University of California, Riverside, have reported advances in so-called "spintronic" devices that will help lead to a new technology for computing and data storage. They have developed methods to detect signals from spintronic components made of low-cost metals and silicon, which overcomes a major barrier to wide application of spintronics. Previously such devices depended on complex structures that used rare and expensive metals such as platinum. The researchers were led by Sandeep Kumar, an assistant professor of mechanical engineering.

Spintronic devices promise to solve major problems in today's electronic computers, in that the computers use massive amounts of electricity and generate heat that requires expending even more energy for cooling. By contrast, spintronic devices generate little heat and use relatively minuscule amounts of electricity. Spintronic computers would require no energy to maintain data in memory. They would also start instantly and have the potential to be far more powerful than today's computers.

While electronics depends on the charge of electrons to generate the binary ones or zeroes of computer data, spintronics depends on the property of electrons called spin. Spintronic materials register binary data via the "up" or "down" spin orientation of electrons - like the north and south of bar magnets - in the materials. A major barrier to development of spintronics devices is generating and detecting the infinitesimal electric spin signals in spintronic materials.

In one paper published in the January issue of the scientific journal Applied Physics Letters, Kumar and colleagues reported an efficient technique of detecting the spin currents in a simple two-layer sandwich of silicon and a nickel-iron alloy called Permalloy. All three of the components are both inexpensive and abundant and could provide the basis for commercial spintronic devices. They also operate at room temperature. The layers were created with the widely used electronics manufacturing processes called sputtering. Co-authors of the paper were graduate students Ravindra Bhardwaj and Paul Lou.

In their experiments, the researchers heated one side of the Permalloy-silicon bi-layer sandwich to create a temperature gradient, which generated an electrical voltage in the bi-layer. The voltage was due to phenomenon known as the spin-Seebeck effect. The engineers found that they could detect the resulting "spin current" in the bi-layer due to another phenomenon known as the "inverse spin-Hall effect."

The researchers said their findings will have application to efficient magnetic switching in computer memories, and "these scientific breakthroughs may give impetus" to development of such devices. More broadly, they concluded, "These results bring the ubiquitous Si (silicon) to forefront of spintronics research and will lay the foundation of energy efficient Si spintronics and Si spin caloritronics devices."

In two other scientific papers, the researchers demonstrated that they could generate a key property for spintronics materials, called antiferromagnetism, in silicon. The achievement opens an important pathway to commercial spintronics, said the researchers, given that silicon is inexpensive and can be manufactured using a mature technology with a long history of application in electronics.

Ferromagnetism is the property of magnetic materials in which the magnetic poles of the atoms are aligned in the same direction. In contrast, antiferromagnetism is a property in which the neighboring atoms are magnetically oriented in opposite directions. These "magnetic moments" are due to the spin of electrons in the atoms, and is central to the application of the materials in spintronics.

In the two papers, Kumar and Lou reported detecting antiferromagnetism in the two types of silicon - called n-type and p-type - used in transistors and other electronic components. N-type semiconductor silicon is "doped" with substances that cause it to have an abundance of negatively-charged electrons; and p-type silicon is doped to have a large concentration of positively charged "holes." Combining the two types enables switching of current in such devices as transistors used in computer memories and other electronics.

In the paper in the Journal of Magnetism and Magnetic Materials, Lou and Kumar reported detecting the spin-Hall effect and antiferromagnetism in n-silicon. Their experiments used a multilayer thin film comprising palladium, nickel-iron Permalloy, manganese oxide and n-silicon.

And in the second paper, in the scientific journal physica status solidi, they reported detecting in p-silicon spin-driven antiferromagnetism and a transition of silicon between metal and insulator properties. Those experiments used a thin film similar to those with the n-silicon.

The researchers wrote in the latter paper that "The observed emergent antiferromagnetic behavior may lay the foundation of Si (silicon) spintronics and may change every field involving Si thin films. These experiments also present potential electric control of magnetic behavior using simple semiconductor electronics physics. The observed large change in resistance and doping dependence of phase transformation encourages the development of antiferromagnetic and phase change spintronics devices."

In further studies, Kumar and his colleagues are developing technology to switch spin currents on and off in the materials, with the ultimate goal of creating a spin transistor. They are also working to generate larger, higher-voltage spintronic chips. The result of their work could be extremely low-power, compact transmitters and sensors, as well as energy-efficient data storage and computer memories, said Kumar.

Research paper


Related Links
University of California - Riverside
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


CHIP TECH
X-ray experiments suggest high tunability of 2-D material
Berkeley CA (SPX) Feb 26, 2018
To see what is driving the exotic behavior in some atomically thin - or 2-D - materials, and find out what happens when they are stacked like Lego bricks in different combinations with other ultrathin materials, scientists want to observe their properties at the smallest possible scales. Enter MAESTRO, a next-generation platform for X-ray experiments at the Advanced Light Source (ALS) at the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab), that is providing new microsca ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
Ensuring fresh air for all

International team publishes roadmap to enhance radioresistance for space colonization

NASA Wants Ideas from University Teams for Future Human Space Missions

Vice President Pence Hosts National Space Council at NASA's Kennedy Space Center

CHIP TECH
SLS Intertank loaded for shipment, structural testing

Millenium tapped for certification of Vulcan space launch systems

Space-X lobs Spanish military satellite into orbit

RS-25 Engine Throttles Up for Deep Space Exploration

CHIP TECH
Nearly a Decade After Mars Phoenix Landed, Another Look

Opportunity Celebrates 5,000 Days on Mars, Snaps First 'Selfie'

A brief history of Martian exploration - as the InSight Lander prepares to launch

Opportunity Continues to Benefit from Dust Cleaning of the Solar Panels

CHIP TECH
China speeds up research, commercialization of space shuttles

Long March rockets on ambitious mission in 2018

Chinese taikonauts maintain indomitable spirit in space exploration: senior officer

China launches first shared education satellite

CHIP TECH
Goonhilly goes deep space

Lockheed Martin Completes Assembly on Arabsat's Newest Communications Satellite

Iridium Certus broadband readies for DOD wsers with COMSAT

Airbus and human spaceflight: from Spacelab to Orion

CHIP TECH
Silk fibers could be high-tech 'natural metamaterials'

Measuring the temperature of two-dimensional materials at the atomic level

Researchers demonstrate promising method for improving quantum information processing

A new way of generating ultra-short bursts of light

CHIP TECH
Model based on hydrothermal sources evaluate possibility of life Jupiter's icy moon

Asteroid 'time capsules' may help explain how life started on Earth

NASA's Transiting Exoplanet Survey Satellite arrives at KSC for launch

Humans will actually react pretty well to news of alien life

CHIP TECH
New Horizons captures record-breaking images in the Kuiper Belt

Europa and Other Planetary Bodies May Have Extremely Low-Density Surfaces

JUICE ground control gets green light to start development

New Year 2019 offers new horizons at MU69 flyby









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.