. 24/7 Space News .
TIME AND SPACE
New Kind of Black Hole Now Firmly Within Observers' Sight
by Staff Writers
Austin TX (SPX) Jul 13, 2016


An image based on a supercomputer simulation of the cosmological environment where primordial gas undergoes the direct collapse to a black hole. The gas flows along filaments of dark matter that form a cosmic web connecting structures in the early universe. The first galaxies formed at the intersection of these dark matter filaments. Image courtesy Aaron Smith/TACC/UT-Austin. For a larger version of this image please go here.

Astronomers Aaron Smith and Volker Bromm of The University of Texas at Austin, working with Avi Loeb of the Harvard-Smithsonian Center for Astrophysics, have discovered evidence for an unusual kind of black hole born extremely early in the universe. They showed that a recently discovered unusual source of intense radiation is likely powered by a "direct-collapse black hole," a type of object predicted by theorists more than a decade ago. Their work is published in the journal Monthly Notices of the Royal Astronomical Society.

"It's a cosmic miracle," Bromm said, referring to the precise set of conditions present half a billion years after the Big Bang that allowed these behemoths to emerge. "It's the only time in the history of the universe when conditions are just right" for them to form.

These direct-collapse black holes may be the solution to a long-standing puzzle in astronomy: How did supermassive black holes form in the early epochs of the universe? There is strong evidence for their existence, as they are needed to power the highly luminous quasars detected in the young universe. However, there are several problems that should prevent their formation, and the conventional growth process is much too slow.

Astronomers think they know how supermassive black holes weighing in at millions of Suns grow in the heart of most galaxies in our present epoch. They get started from a "seed" black hole, created when an extremely massive star collapses. This seed black hole has the mass of about 100 Suns. It pulls in gas from its surroundings, becoming much more massive, and eventually may merge with other seed black holes. This entire process is called accretion.

The accretion theory does not explain supermassive black holes in extremely distant - and therefore young - quasars. Visible to us despite its distance of billions of light-years, a quasar's incredible brightness comes from matter spiraling into a supermassive black hole, heating to millions of degrees, creating jets that shine as beacons across the universe.

These early galaxies may have contained the first generation of stars created after the Big Bang. And although these stars can collapse to form black holes, they don't work as early quasar seeds. There is no surrounding gas for the black hole to feed on. That gas has been blown away by winds from the hot, newly formed stars.

"Star formation is the enemy of forming massive black holes" in early galaxies, Bromm said. "Stars produce feedback that blows away the surrounding gas cloud."

For decades, astronomers have called this conundrum "the quasar seed problem."

In 2003, Bromm and Loeb came up with a theoretical idea to get an early galaxy to form a supermassive seed black hole, by suppressing the otherwise prohibitive energy input from star formation. Astronomers later dubbed this process "direct collapse."

Begin with a "primordial cloud of hydrogen and helium, suffused in a sea of ultraviolet radiation," Bromm said. "You crunch this cloud in the gravitational field of a dark-matter halo. Normally, the cloud would be able to cool, and fragment to form stars. However, the ultraviolet photons keep the gas hot, thus suppressing any star formation. These are the desired, near-miraculous conditions: collapse without fragmentation! As the gas gets more and more compact, eventually you have the conditions for a massive black hole."

This set of cosmic conditions is exquisitely sensitive to the time period in the universe's history - this process does not happen in galaxies today.

According to Loeb, "The quasars observed in the early universe resemble giant babies in a delivery room full of normal infants. One is left wondering: what is special about the environment that nurtured these giant babies? Typically the cold gas reservoir in nearby galaxies like the Milky Way is consumed mostly by star formation.

"The theory we proposed when Bromm was my postdoc [at Harvard] suggested that the conditions in the first generation of galaxies were different," he said. "Instead of making many normal stars, these galaxies formed a single supermassive star at their center that ended up collapsing to a seed black hole. Hence the gas in these environments was used to feed this seed black hole rather than make many normal stars."

Bromm and Loeb published their theory in 2003. "But it was all theoretical back then," Bromm said.

Fast-forward a dozen years, and Bromm is now a professor at The University of Texas at Austin with post-docs and graduate students of his own. That's where Aaron Smith comes in.

Smith, Bromm, and Loeb had become interested in a galaxy called CR7, identified from a Hubble Space Telescope survey called COSMOS (in a paper led by Jorryt Matthee of Leiden University). Hubble spied CR7 at 1 billion years after the Big Bang.

David Sobral of the University of Lisbon had made follow-up observations of CR7 with some of the world's largest ground-based telescopes, including Keck and the VLT. These uncovered some extremely unusual features in the light signature coming from CR7. Specifically a certain hydrogen line in the spectrum, known as "Lyman-alpha," was several times brighter than expected. Remarkably, the spectrum also showed an unusually bright helium line.

"Whatever is driving this source is very hot - hot enough to ionize helium," Smith said.

Bromm agreed. "You need it to be 100,000 K - very hot, a very hard UV source" for that to happen, he said.

These and other unusual features in the spectrum, such as the absence of any detected lines from elements heavier than helium (in astronomical parlance, "metals,") together with the source's distance - and therefore its cosmic epoch - meant that it could either be a cluster of primordial stars or a supermassive black hole likely formed by direct collapse.

Smith ran simulations for both scenarios using the Stampede supercomputer at UT Austin's Texas Advanced Computing Center.

"We developed a novel code," Smith said, explaining that his code modeled the system differently than previous simulations.

"The old models were like a snapshot; this one is like a movie," he explained.

The type of modeling Smith used is called "radiation hydrodynamics," Bromm said. "It's the most expensive approach in terms of computer processing power."

The new code paid off, though. The star cluster scenario "spectacularly failed," Smith said, while the direct collapse black hole model performed well.

Bromm said their work is about more than understanding the inner workings of one early galaxy.

"With CR7, we had one intriguing observation. We are trying to explain it, and to predict what future observations will find. We are trying to provide a comprehensive theoretical framework."

In addition to Smith, Bromm, and Loeb's work, NASA recently announced the discovery of two additional direct-collapse black hole candidates based on observations with the Chandra X-ray Observatory.

It seems astronomers are "converging on this model," for solving the quasar seed problem, Smith said.

"Evidence for a direct collapse black hole in the Lyman-alpha source CR7," Aaron Smith, Volker Bromm and Abraham Loeb, 2016, Monthly Notices of the Royal Astronomical Society


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
McDonald Observatory
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TIME AND SPACE
Aftermath of Star Being Swallowed by Supermassive Black Hole
Onsala, Sweden (SPX) Jul 08, 2016
Radio astronomers have used a radio telescope network the size of the Earth to zoom in on a unique phenomenon in a distant galaxy: a jet activated by a star being consumed by a supermassive black hole. The record-sharp observations reveal a compact and surprisingly slowly-moving source of radio waves. An international team of radio astronomers led by Jun Yang (Onsala Space Observatory, Cha ... read more


TIME AND SPACE
Russia to spend $60M in 2016-2018 to fund space voyages to Moon, Mars

Russian Moon Base to Hold Up to 12 People

US may approve private venture moon mission: report

Fifty Years of Moon Dust

TIME AND SPACE
Curiosity Mars Rover Enters Precautionary Safe Mode

Scientists' Innovation Began With 'Wanting to Understand Why'

Mars Canyons Study Adds Clues about Possible Water

Opportunity finishing science investigations at the center of Marathon Valley

TIME AND SPACE
Mathematical framework prioritizes key patterns to accelerate scientific discovery

A decade of plant biology in space

Exploring inner space for outer space

Quantum technologies to revolutionize 21st century

TIME AND SPACE
Dutch Radio Antenna to Depart for Moon on Chinese Mission

Chinese Space Garbageman is not a Weapon

China to launch its largest carrier rocket later this year

China committed to peaceful use of outer space

TIME AND SPACE
New Crew Members, Including NASA Biologist, Launch to Space Station

Three astronauts blast off for ISS in upgraded Soyuz craft

Soyuz-FG to launch new crew to ISS fully assembled

Down to Earth: Returned astronaut relishes little things

TIME AND SPACE
Ukraine, US Plan to Launch Jointly-Developed Space Rocket in Coming Months

Russia to Continue Rocket Engine Supplies to US Under Existing Contracts

India launches 20 satellites in single mission

LSU Chemistry Experiment Aboard Historic Suborbital Space Flight

TIME AND SPACE
Lush Venus? Searing Earth? It could have happened

A surprising planet with three suns

Teenagers at Keele University Discover Possible New Exoplanet

What Happens When You Steam a Planet

TIME AND SPACE
Winning Students Selected for Future Engineers Star Trek Replicator Challenge

Russian Scientists Propose Charging Satellites Using Land-Based Lasers

Researchers determine fundamental limits of invisibility cloaks

Japan satellite made 'surprise' find before failure









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.