Subscribe free to our newsletters via your
. 24/7 Space News .




Subscribe free to our newsletters via your




















MICROSAT BLITZ
New CubeSat propulsion system uses water as propellant
by Staff Writers
West Lafayette IN (SPX) Aug 09, 2017


Purdue University graduate student Katherine Fowee and postdoctoral research associate Anthony Cofer work on a new micropropulsion system for miniature satellites called CubeSats. Credit (Purdue University photo/Erin Easterling)

A new type of micropropulsion system for miniature satellites called CubeSats uses an innovative design of tiny nozzles that release precise bursts of water vapor to maneuver the spacecraft.

Low-cost "microsatellites" and "nanosatellites" far smaller than conventional spacecraft, have become increasingly prevalent. Thousands of the miniature satellites might be launched to perform a variety of tasks, from high-resolution imaging and internet services, to disaster response, environmental monitoring and military surveillance.

"They offer an opportunity for new missions, such as constellation flying and exploration that their larger counterparts cannot economically achieve," said Alina Alexeenko, a professor in Purdue University's School of Aeronautics and Astronautics.

However, to achieve their full potential, CubeSats will require micropropulsion devices to deliver precise low-thrust "impulse bits" for scientific, commercial and military space applications.

She has led research to develop a new micropropulsion system that uses ultra-purified water.

"Water is thought to be abundant on the Martian moon Phobos," she said. "making it potentially a huge gas station in space. Water is also a very clean propellant, reducing risk of contamination of sensitive instruments by the backflow from thruster plumes."

The new system, called a Film-Evaporation MEMS Tunable Array, or FEMTA thruster, uses capillaries small enough to harness the microscopic properties of water. Because the capillaries are only about 10 micrometers in diameter, the surface tension of the fluid keeps it from flowing out, even in the vacuum of space.

Activating small heaters located near the ends of the capillaries creates water vapor and provides thrust. In this way, the capillaries become valves that can be turned on and off by activating the heaters. The technology is similar to an inkjet printer, which uses heaters to push out droplets of ink.

The research paper was authored by graduate student Katherine Fowee; undergraduate students Steven Pugia, Ryan Clay, Matthew Fuehne and Margaret Linker; postdoctoral research associate Anthony Cofer; and Alexeenko

"It's very unusual for undergraduate students to have such a prominent role in advanced research like this," Alexeenko said.

The students performed the research as part of a propulsion design course.

CubeSats are made up of several units, each measuring 10-centimeters cubed. In the Purdue research, four FEMTA thrusters loaded with about a teaspoon of water were integrated into a one-unit CubeSat prototype and tested in a vacuum. The prototype, which weighs 2.8 kilograms, or about six pounds, contained electronics and an inertial measurement unit sensor to monitor the performance of the thruster system, which rotates the satellite using short-lived bursts of water vapor.

Typical satellites are about the size of a school bus, weigh thousands of pounds and sometimes cost hundreds of millions of dollars. And while conventional satellites require specialized electronics that can withstand the harsh conditions of space, CubeSats can be built with low-cost, off-the-shelf components. Constellations of many inexpensive, disposable satellites might be launched, minimizing the impact of losing individual satellites.

However, improvements are needed in micropropulsion systems to mobilize and precisely control the satellites.

"There have been substantial improvements made in micropropulsion technologies, but further reductions in mass, volume, and power are necessary for integration with small spacecraft," Alexeenko said.

The FEMTA technology is a micro-electromechanical system, or a MEMS, which are tiny machines that contain components measured on the scale of microns, or millionths of a meter. The thruster demonstrated a thrust-to-power ratio of 230 micronewtons per watt for impulses lasting 80 seconds.

"This is a very low power," Alexeenko said. "We demonstrate that one 180-degree rotation can be performed in less than a minute and requires less than a quarter watt, showing that FEMTA is a viable method for attitude control of CubeSats."

The FEMTA thrusters are microscale nozzles manufactured on silicon wafers using nanofabrication techniques common in industry. The model was tested in Purdue's High Vacuum Facility's large vacuum chamber.

Although the researchers used four thrusters, which allow the satellite to rotate on a single axis, a fully functional satellite would require 12 thrusters for 3-axis rotation.

The team built the system with inexpensive, commercially available devices that are integral for the "internet of things," an emerging phenomenon in which many everyday objects such as appliances and cars have their own internet addresses.

"These undergraduate students integrated all the IOT technologies, which, frankly, they know more about than I do," she said.

The inertial measurement unit handles 10 different types of measurements needed to maneuver and control the satellite. An onboard computer wirelessly receives signals to fire the thruster and transmits motion data using this IMU chip.

"What we really want to do next is integrate our system into a satellite for an actual space mission," she said.

The research involved a collaboration with NASA's Goddard Space Flight Center through the space agency's SmallSat Technology Partnership program, which provided critical funding since the concept inception in 2013.

A patent application for the concept has been filed through the Purdue Research Foundation's Office of Technology Commercialization. The nozzles for the system were fabricated in the Scifres

Nanofabrication Laboratory in the Birck Nanotechnology Center in Purdue's Discovery Park.

Research findings about the new system are detailed in a paper being presented during the 31st AIAA/USU Conference on Small Satellites, Aug. 5-10 in Logan, Utah. A YouTube video about the work is available here

MICROSAT BLITZ
SwRI's small satellite mission moves forward
Boulder CO (SPX) Aug 04, 2017
NASA has selected Southwest Research Institute (SwRI) to further develop the concept for a small satellite mission to image the Sun's outer corona. SwRI's "Polarimeter to Unify the Corona and Heliosphere" (PUNCH) program was selected for a mission concept study through NASA's Heliophysics Small Explorers Program (SMEX). The PUNCH program proposes a constellation of four suitcase-sized sate ... read more

Related Links
Purdue University
Microsat News and Nanosat News at SpaceMart.com

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

MICROSAT BLITZ
Voyager spacecraft still in communication 40 years out into the void

A look inside the Space Station's experimental BEAM module

Two Voyagers Taught Us How to Listen to Space

NASA Offers Space Station as Catalyst for Discovery in Washington

MICROSAT BLITZ
VSS Unity Flies with Propulsion Systems Installed and Live

Dragon to be packed with new experiments for International Space Station

NASA taps BWXT for reactor design for future Mars missions

ISRO Develops Ship-Based Antenna System to Track Satellite Launches

MICROSAT BLITZ
Opportunity enters Automode during solar conjunction pause

Five Years Ago and 154 Million Miles Away: Touchdown!

For Moratorium on Sending Commands to Mars, Blame the Sun

Tributes to wetter times on Mars

MICROSAT BLITZ
China develops sea launches to boost space commerce

Chinese satellite Zhongxing-9A enters preset orbit

Chinese Space Program: From Setback, to Manned Flights, to the Moon

Chinese Rocket Fizzles Out, Puts Other Launches on Hold

MICROSAT BLITZ
Lockheed Martin invests $350M in state-of-the-art satellite production facility

ASTROSCALE Raises a Total of $25 Million in Series C Led by Private Companies

LISA Pathfinder: bake, rattle and roll

Airbus DS to expand cooperation with Russia

MICROSAT BLITZ
Fundamental breakthrough in the future of designing materials

A new synthesis route for alternative catalysts of noble metals

Synthetic materials systems that can "count" and sense their size

Scientists discover new magnet with nearly massless charge carriers

MICROSAT BLITZ
Unexpected life found at bottom of High Arctic lakes

NASA hiring a planetary protection officer to guard against alien invaders

Researchers detect exoplanet with glowing water atmosphere

Hubble detects exoplanet with glowing water atmosphere

MICROSAT BLITZ
Twilight observations reveal huge storm on Neptune

Jovian storm looms large in the Jupiter's High North

New Horizons Video Soars over Pluto's Majestic Mountains and Icy Plains

Juno spots Jupiter's Great Red Spot




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement