Subscribe to our free daily newsletters
. 24/7 Space News .




Subscribe to our free daily newsletters



New Clues To Early Sol

This false-color conglomerate image, created using the Hubble Space Telescope, shows Vesta's rugged surface highlighted by a single crater that dominates the lower part of the image. Blue indicates low terrain while red indicates raised terrain. Credit: B. Zellner (GSU), P. Thomas (Cornell), et al., WFPC2, HST, NASA
by Karen Kelly
Toronto, Canada (SPX) Aug 14, 2007
A University of Toronto-led study has uncovered tiny zircon crystals in a meteorite originating from Vesta (a large asteroid between Mars and Jupiter), shedding light on the formation of planetesimals, small astronomical objects that form the basis of planets.

To date, studying zircons in eucrites - meteorites formed by volcanic activity - has been difficult due to impact- induced fracturing and their small size, typically less than five microns. Most eucrites are formed within the asteroid belt that orbits Mars and Jupiter, a heap of astronomical debris from the earliest epoch of the solar system.

In a study published in the recent issue of Science, researchers collected samples from eucrites found in Antarctica believed to have originated from Vesta. The researchers used new technology to reveal that asteroid's boiling rock turned solid and crystallized within less than 10 million years of solar system formation.

"Until now we have not been able to determine this time frame unambiguously," said lead author Gopalan Srinivasan, a professor in U of T's Department of Geology. "By pinpointing the timeframe we're able to add one more piece to the geological and historical map of our solar system."

Scientists believe that at some point Vesta was quickly heated and then melted into a metallic and silicate core, similar to the process that happened on Earth. The energy for this process was released from the radioactive decay that was present in abundance in the early solar system. What has been unclear is when this process occurred.

Equipped with the ion microprobe at the Swedish National Museum, Srinivasan and colleagues from four institutions set to analyze the zircons in the eucrites, which formed when a radioactive element - hafnium-182 - was still alive. Radioactive hafnium-182 decays to another element - tungsten-182 - with a nearly nine-million year half-life span. By studying zircons for their 182 tungsten abundance, the researchers were able to determine the crystallization ages of eucrites occurred within that timeframe.

"Zircons on Earth and in space have basically the same characteristics," Srinivasan says. "They occur when boiling rock crystallizes and turns into solid form primary crystallization products or they could be secondary products caused by heating from impacts. We know Vesta became inactive within first 10 million years of solar system formation which is nearly 4.5 billion years ago. This provides a snapshot of the early solar system and clues to the early evolution of Earth's mantle and core."

Community
Email This Article
Comment On This Article

Related Links
University of Toronto
Stellar Chemistry, The Universe And All Within It



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


HESS J1616-508 Likely Powered by Young Pulsar PSR J1617-5055
Paris, France (ESA) Aug 10, 2007
By combining X-ray and gamma ray observations from the INTEGRAL, XMM-Newton, Swift and BeppoSAX satellites, a group of astronomers have identified a very likely source of power for the bright TeV source HESS J1616-508. The data covers the sky around HESS J1616-508 that contains several sources detected at X-ray and gamma ray energies, none of which however were as yet firmly identified as a counterpart for the bright TeV source.







  • Undersea Mission Aids Development Of Self-Test For Stress And Fatigue
  • NASA Seeks Launch Logistics Help
  • Historic Phoenix Mars Mission Flies Actel RTAX-S Devices
  • Spaceport America Design Team Selected

  • What Makes Mars Magnetic
  • Phoenix Adjusts Course Successfully For Journey To Mars
  • Helping Phoenix Land
  • Brighter Skies Lifts Rover Spirit As MER-A Gets Active

  • Russian Proton-M Rocket To Launch Japanese Telecoms Satellite
  • ILS to Launch Inmarsat Satellite On Proton Vehicle Next Spring
  • European Automated Space Truck Arrive At South American Spaceport
  • A Double Transfer At The Spaceport For The Next Two Ariane 5 Launchers

  • Radar reveals vast medieval Cambodian city: study
  • Satellite Tracking Will Help Answer Questions About Penguin Travels
  • NASA Helps Texas Respond To Most Widespread Flooding In 50 Years
  • Thailand To Launch Environment Satellite In November

  • Outbound To The Outerplanets At 7 AU
  • Charon: An Ice Machine In The Ultimate Deep Freeze
  • New Horizons Slips Into Electronic Slumber
  • Nap Before You Sleep For Your Cruise Into The Abyss Of Outer Sol

  • New Clues To Early Sol
  • HESS J1616-508 Likely Powered by Young Pulsar PSR J1617-5055
  • Spitzer Spies Monster Galaxy Pileup
  • Star Caught Smoking Stellar Trash

  • China plans to survey 'every inch' of moon
  • Seeing The Moon Anew
  • NASA Selects Astrophysics Projects For New Science On The Moon
  • Throttling Back To The Moon

  • Galileo To Support Global Search And Rescue
  • Car Satellite Navigation Systems Can Be Steered The Wrong Way
  • ShoZu One-Click Image Upload Service To Be Embedded In Samsung Handsets
  • Cell Phones And PDAs Revolutionize How Consumers Find Homes On REALTOR.com

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2007 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement