. 24/7 Space News .
TECH SPACE
New 3-D printing method promises vastly superior medical implants for millions
by Staff Writers
Gainesville FL (SPX) May 17, 2017


ater is pumped from one reservoir to another using a 3D printed silicone valve. The silicone valve contains two encapsulated ball valves that allow water to be pumped through the valve by squeezing the lower chamber. The silicone valve demonstrates the ability of our 3D printing method to create multiple encapsulated components in a single part - something that cannot be done with a traditional 3D printing approach.

For the millions of people every year who have or need medical devices implanted, a new advancement in 3D printing technology developed at the University of Florida promises significantly quicker implantation of devices that are stronger, less expensive, more flexible and more comfortable than anything currently available.

In a paper published in the journal Science Advances, researchers lay out the process they developed for using 3D printing and soft silicone to manufacture items that millions of patients use: ports for draining bodily fluids, implantable bands, balloons, soft catheters, slings and meshes.

Currently, such devices are molded, which could take days or weeks to create customized parts designed to fit an individual patient. The 3D printing method cuts that time to hours, potentially saving lives. What's more, extremely small and complex devices, such as drainage tubes containing pressure-sensitive valves, simply cannot be molded in one step.

With the UF team's new method, however, they can be printed.

"Our new material provides support for the liquid silicone as it is 3D printing, allowing us create very complex structures and even encapsulated parts out of silicone elastomer," said lead author Christopher O'Bryan, a mechanical and aerospace engineering doctoral student in UF's Herbert Wertheim College of Engineering and lead author on the paper.

It also could pave the way for new therapeutic devices that encapsulate and control the release of drugs or small molecules for guiding tissue regeneration or assisting diseased organs such as the pancreas or prostate.

The cost savings could be significant as well.

"The public is more sensitive to the high costs of medical care than ever before. Almost monthly we see major media and public outcry against high health care costs, wasteful spending in hospitals, exorbitant pharmaceutical costs," said team member Tommy Angelini, an associate professor of mechanical and aerospace. "Everybody agrees on the need to reduce costs in medicine."

The new method was born out of a project Angelini and his team have been working on for several years: printable organs and tissues. To that end, the team made a significant discovery two years ago when it created a revolutionary way to manufacture soft materials using 3D printing and microscopic hydrogel particles as a medium.

The problem was, the previous granular gel materials were water-based, so they were incompatible with oily "inks" like silicone. It was literally a case of trying to mix oil and water.

To solve that problem, the team came up with an oily version of the microgels.

"Once we started printing oily silicone inks into the oily microgel materials, the printed parts held their shapes," Angelini said. "We were able to achieve really excellent 3D printed silicone parts - the best I've seen."

Manufacturing organs and tissues remains a primary goal, but one that likely is many years away from reality.

Not so with the medical implants.

"The reality is that we are probably decades away from the widespread implanting of 3D printed tissues and organs into patients," Angelini said. "By contrast, inanimate medical devices are already in widespread use for implantation. Unlike the long wait we have ahead of us for other 3D bioprinting technolgies to be developed, silicone devices can be put into widespread use without technologically limited delay."

Other members of the UF team are Tapomoy Bhattacharjee, Samuel Hart, Christopher P. Kabb, Kyle D. Schulze, Indrasena Chilakala, Brent S. Sumerlin, and Greg Sawyer.

TECH SPACE
Scientists create hologram that changes images as it is stretched
Washington DC (UPI) May 10, 2017
Researchers at the University of Pennsylvania have created a hologram that switches between images as it is stretched. The hologram was made using ultra-thin nanostructured surfaces called metasurfaces. A team of material scientists led by Ritesh Agarwal created the metasurfaces by embedding gold nanorods in polydimethylsiloxane, a stretchable film. The researchers used computer ... read more

Related Links
University of Florida
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
SoftBank-Saudi high-tech Vision fund raises $93bn

Joint Statement: The Fourth Meeting of the U.S.-Japan Comprehensive Dialogue on Space

Older Americans warm to new technology: survey

ISS crew harvest new crop of vegetables grown in space

TECH SPACE
Mining the moon for rocket fuel to get us to Mars

Arianespace launches SES-15 using Soyuz rocket

ISRO to Launch GSLV Mark III, Its Heaviest Rocket Soon

Sky Skimmer: Rocket Lab Sets Date for Lightweight Spacecraft Test Launch

TECH SPACE
Deciphering the fluid floorplan of a planet

How hard did it rain on Mars

Mars Rover Opportunity Begins Study of Valley's Origin

Opportunity Reaches 'Perseverance Valley'

TECH SPACE
A cabin on the moon? China hones the lunar lifestyle

China tests 'Lunar Palace' as it eyes moon mission

China to conduct several manned space flights around 2020

Reach for the Stars: China Plans to Ramp Up Space Flight Activity

TECH SPACE
Allied Minds' portfolio company BridgeSat raises $6 million in Series A financing

AIA report outlines policies needed to boost the US Space Industry competitiveness

Blue Sky Network Targets Key Markets For Iridium SATCOM Solutions

How Outsourcing Your Satellite Related Services Saves You Time and Money

TECH SPACE
HPC4MfG paper manufacturing project yields first results

Unfolding the folding mechanism of ladybug wings

Swirling swarms of bacteria offer insights on turbulence

Scientists develop real-time technique for studying ionic liquids at electrode interfaces

TECH SPACE
Radio Detection of Lonely Planet Disk Shows Similarity with Stars

ALMA eyes icy ring around young planetary system

New study sheds light on origins of life on Earth through molecular function

Primitive Atmosphere Found Around 'Warm Neptune'

TECH SPACE
NASA asks science community for Europa Lander Instruments ideas

Waves of lava seen in Io's largest volcanic crater

Not So Great Anymore: Jupiter's Red Spot Shrinks to Smallest Size Ever

The PI's Perspective: No Sleeping Back on Earth!









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.