Subscribe free to our newsletters via your
. 24/7 Space News .




NANO TECH
Nanowires highly 'anelastic'
by Staff Writers
Providence RI (SPX) Jul 14, 2015


Zinc oxide nanowires return to shape slowly after being bent, new research from Brown and NC State shows. That property, called anelasticity, suggests that nanowires might be good in applications that require absorption of shocks or vibrations. Image courtesy Zhu lab / NC State. For a larger version of this image please go here.

Researchers from Brown University and North Carolina State University have found that nanowires made of zinc oxide are highly anelastic, meaning they return to shape slowly after being bent, rather that snapping right back. The findings, published in the journal Nature Nantechnology, add one more to the growing list of interesting properties found in nanoscale wires, tiny strands thousands of times thinner than a human hair.

"What's surprising here is the magnitude of the effect," said Huajian Gao, the Walter H. Annenberg Professor of Engineering and a coauthor of a new paper describing the research. "Anelasticity is present but negligible in many macroscale materials, but becomes prominent at the nanoscale. We show an anelastic effect in nanowires that is four orders of magnitude larger than what is observed in even the most anelastic bulk materials."

The findings are significant in part because anelastic materials are good absorbers of kinetic energy. These results suggest that nanowires could be useful in damping shocks and vibrations in a wide variety of applications.

"During the last decade, zinc oxide nanowire has been recognized as one of the most important nanomaterials with a broad range of applications such as mechanical energy harvesting, solar cells, sensors and actuators," Gao said. "Our discovery of giant anelasticity and high energy dissipation in zinc oxide nanowires adds a new dimension to their functionality."

The experiments for the study were done in the lab of Yong Zhu, an associate professor of mechanical and aerospace engineering at NC State. Zhu and his colleagues used a delicate apparatus to bend nanowires under a scanning electron microscope.

The work showed that, after the bending strain was released, the wires returned to about 80 percent of their original shape quickly. But they recovered the rest of their original shape much more slowly, over the course of up to 20 or 30 minutes. That is a far more prominent anelastic effect than is common at the macroscale.

To understand why the effect is so prominent, Zhu and his team worked with Gao's lab at Brown, which specializes in theoretical modeling of nanoscale systems. The model that Gao and his colleagues developed suggests that the anelasticity is a result of impurities in the wires' crystal lattice. Lattice impurities come in two forms. There are vacancies, where atoms are missing from the lattice; and there are interstitials, where the lattice has extra atoms.

When a wire is bent to form an arch, there's higher compressive strain on the underside of the arch compared to the upper side. The compression pushes interstitial atoms toward the outside edge, and draws the vacancies toward the inside. When the strain is released, those impurities migrate back to where they started.

That migration takes a bit of time, which is why the wire returns to shape slowly. Because nanowires are so small, the impurities need only travel a short distance to generate a perceptible anelastic effect, which is why the effect is so much more pronounced at the nanoscale compared to the macroscale.

To further test whether the anelasticity was rooted in impurities, the team tested wires made from a different material--silicon doped with boron impurities. Like the zinc oxide nanowires, the doped silicon also proved to be anelastic.

The findings suggest that anelasticity is likely a common property of single-crystal nanowires. "One reviewer [of our paper] commented that this is a new important page in the book on mechanics of nanostructures," Zhu said. "The factors that favor anelasticity, such as high strain gradient, short diffusion distance and large diffusivity of point defects, are all prominently present in nanowires".


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Brown University
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








NANO TECH
Polymer mold makes perfect silicon nanostructures
Ithaca NY (SPX) Jul 14, 2015
Using molds to shape things is as old as humanity. In the Bronze Age, the copper-tin alloy was melted and cast into weapons in ceramic molds. Today, injection and extrusion molding shape hot liquids into everything from car parts to toys. For this to work, the mold needs to be stable while the hot liquid material hardens into shape. In a breakthrough for nanoscience, Cornell polymer engine ... read more


NANO TECH
Russia to Land Space Vessel on Moon's Polar Region in 2019

Moon engulfed in permanent, lopsided dust cloud

Crashing comets may explain mysterious lunar swirls

Google Lunar X-Prize meets Yoda

NANO TECH
Opportunity Rover's 7th Mars Winter to Include New Study Area

Opportunity Gets Back to Work

NASA wants to send microbes to Mars to prepare for human habitation

Could This Become the First Mars Airplane

NANO TECH
US selects four astronauts for commercial flight

Docking Adapter Sets Stage for Commercial Crew Crew

Targeted LEDs could provide efficient lighting for plants grown in space

NASA Gears Up to Test Orion's Powerhouse

NANO TECH
Chinese earth station is for exclusively scientific and civilian purposes

Cooperation in satellite technology put Belgium, China to forefront

China set to bolster space, polar security

China's super "eye" to speed up space rendezvous

NANO TECH
'Jedi' astronauts say 'no fear' as they gear for ISS trip

Relief as Russian cargo ship docks at space station

Loss of SpaceX Cargo Resupply Mission No Threat to ISS Crew Security

Russia launches Soyuz Progress with supplies for ISS

NANO TECH
India to launch its heaviest commercial mission to date

Final payload integration begins for next Ariane 5 launch

Licensed commercial spaceport to be built in Houston, Texas

More Fidelity for SpaceX In-Flight Abort Reduces Risk

NANO TECH
Bricks to build an Earth found in every planetary system

Observing the birth of a planet

Precise ages of largest number of stars hosting planets ever measured

Can Planets Be Rejuvenated Around Dead Stars?

NANO TECH
Advanced composites may borrow designs from deep-sea shrimp

Nonmagnetic elements form unique magnet

Lower cost ultrasound degassing now possible in processing aluminum

New computer program may fix billion-dollar bit rot problem




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.