Subscribe free to our newsletters via your
. 24/7 Space News .

Polymer mold makes perfect silicon nanostructures
by Staff Writers
Ithaca NY (SPX) Jul 14, 2015

File image.

Using molds to shape things is as old as humanity. In the Bronze Age, the copper-tin alloy was melted and cast into weapons in ceramic molds. Today, injection and extrusion molding shape hot liquids into everything from car parts to toys.

For this to work, the mold needs to be stable while the hot liquid material hardens into shape. In a breakthrough for nanoscience, Cornell polymer engineers have made such a mold for nanostructures that can shape liquid silicon out of an organic polymer material. This paves the way for perfect, 3-D, single crystal nanostructures.

The advance is from the lab of Uli Wiesner, Professor of Engineering in the Department of Materials Science and Engineering, whose lab previously has led the creation of novel materials made of organic polymers. With the right chemistry, organic polymers self-assemble, and the researchers used this special ability of polymers to make a mold dotted with precisely shaped and sized nano-pores. The research is published in Science.

Normally, melting amorphous silicon, which has a melting temperature of about 2,350 degrees, would destroy the delicate polymer mold, which degrades at about 600 degrees. But the scientists, in collaboration with Michael Thompson, associate professor of materials science and engineering, got around this issue by using extremely short melt periods induced by a laser.

The researchers found the polymer mold holds up if the silicon is heated by laser pulses just nanoseconds long. At such short time scales, silicon can be heated to a liquid, but the melt duration is so short the polymer doesn't have time to oxidize and decompose. They essentially tricked the polymer mold into retaining its shape at temperatures above its decomposition point.

When the mold was etched away, the researchers showed that the silicon had been perfectly shaped by the mold. This could lead to making perfect, single-crystal silicon nanostructures. They haven't done it yet, but their Science paper shows it's possible. In work published in 2010, Wiesner and colleagues showed the pathway for this process, using an oxide mold.

Wiesner called the breakthrough "beautiful" and a possibly fundamental insight into studying nanoscale materials. In materials science, the goal is always to get well-defined structures that can be studied without interference from material defects.

Most self-assembled nanostructures today are either amorphous or polycrystalline - made up of more than one piece of a material with perfect order. It's hard to judge whether their properties are due to the nanostructure itself or whether they're dominated by defects in the material.

Discovery of single-crystal silicon - the semiconductor in every integrated circuit - made the electronics revolution possible. It took cutting single crystals into wafers to truly understand silicon's semiconducting properties. Today, nanotechnology allows incredibly detailed nanoscale etching, down to 10 nanometers on a silicon wafer.

But nanofabrication techniques like photolithography, in which a polymeric material is written with a structure that is etched into the silicon, hits its limits when it comes to 3-D structures.

Semiconductors like silicon don't self-assemble into perfectly ordered structures like polymers do. It's almost unheard of to get a 3-D structured single crystal of a semiconductor. To make single crystal nanostructures, there are two options: multiple etching or molding. Wiesner's group now has made the mold.

The way they made the mold was itself a breakthrough. They had previously learned to self-assemble highly ordered, porous nanomaterials using specially structured molecules called block copolymers.

They first used a carbon dioxide laser in Thompson's lab to "write" the nanoporous materials onto a silicon wafer. A film, spin-coated on the wafer, contained a block copolymer, which directed the assembly of a polymer resin. Writing lines in the film with the laser, the block copolymer decomposed, acting like a positive-tone resist, while the negative-tone resin was left behind to form the porous nanostructure. That became the mold.

"We demonstrated that we can use organic templates with structures as complicated as a gyroid, a periodically ordered cubic network structure, and 'imprint' it onto molten silicon, which then transforms into crystalline silicon," Wiesner said.

"Having the ability to mold the workhorse of all electronics, silicon, into intricate shapes is unprecedented," said Andy Lovinger, a program director in the materials research division at the National Science Foundation, which funded Wiesner's research. "This beautiful work shows how it could be done by taking advantage of the unique design properties offered by polymeric materials."

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once

credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly

paypal only


Related Links
Cornell University
Nano Technology News From
Computer Chip Architecture, Technology and Manufacture

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

Superslippery islands (but then they get stuck)
Trieste, Italy (SPX) Jul 10, 2015
(Nano)islands that slide freely on a sea of copper, but when they become too large (and too dense) they end up getting stuck: that nicely sums up the system investigated in a study just published in Nature Nanotechnology. "We can suddenly switch from a state of superlubricity to one of extremely high friction by varying some parameters of the system being investigated. In this study, we us ... read more

Russia to Land Space Vessel on Moon's Polar Region in 2019

Moon engulfed in permanent, lopsided dust cloud

Crashing comets may explain mysterious lunar swirls

Google Lunar X-Prize meets Yoda

Opportunity Rover's 7th Mars Winter to Include New Study Area

Opportunity Gets Back to Work

NASA wants to send microbes to Mars to prepare for human habitation

Could This Become the First Mars Airplane

US selects four astronauts for commercial flight

Docking Adapter Sets Stage for Commercial Crew Crew

Targeted LEDs could provide efficient lighting for plants grown in space

NASA Gears Up to Test Orion's Powerhouse

Chinese earth station is for exclusively scientific and civilian purposes

Cooperation in satellite technology put Belgium, China to forefront

China set to bolster space, polar security

China's super "eye" to speed up space rendezvous

'Jedi' astronauts say 'no fear' as they gear for ISS trip

Relief as Russian cargo ship docks at space station

Loss of SpaceX Cargo Resupply Mission No Threat to ISS Crew Security

Russia launches Soyuz Progress with supplies for ISS

India to launch its heaviest commercial mission to date

Final payload integration begins for next Ariane 5 launch

Licensed commercial spaceport to be built in Houston, Texas

More Fidelity for SpaceX In-Flight Abort Reduces Risk

Bricks to build an Earth found in every planetary system

Observing the birth of a planet

Precise ages of largest number of stars hosting planets ever measured

Can Planets Be Rejuvenated Around Dead Stars?

Advanced composites may borrow designs from deep-sea shrimp

Nonmagnetic elements form unique magnet

Lower cost ultrasound degassing now possible in processing aluminum

New computer program may fix billion-dollar bit rot problem

The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.