Subscribe free to our newsletters via your
. 24/7 Space News .




BLUE SKY
NRL Reveals New Meteorological Insight into Mid-Level Clouds
by Staff Writers
Washington DC (SPX) Jul 23, 2014


Research meteorologists at the U.S. Naval Research Laboratory (NRL) Marine Meteorology Division (MMD) and Scripps Institution of Oceanography, employing the Navy's Mid-Course Doppler Radar (MCR) at Cape Canaveral, were able to characterize mid-level, mixed phase altocumulus clouds in unprecedented detail. The plot depicts the MCR-derived vertical velocity with the solid red and blue contours bounding upward and downward motion, respectively. The white curves depict the cloud layer position and the dashed blue line the peak cloud top radiative cooling. The black arrows depict cloud circulation features. The radiation-induced subsidence is shown by the horizontally oriented ellipses near cloud-top. Image courtesy U.S. Naval Research Laboratory. For a larger version of this image please go here.

Research meteorologists at the U.S. Naval Research Laboratory (NRL) Marine Meteorology Division (MMD) and Scripps Institution of Oceanography, employing the Navy's Mid-Course Doppler Radar (MCR) at Cape Canaveral, were able to characterize mid-level, mixed-phase altocumulus clouds.

In altocumulus clouds, at medium altitudes ranging from 6,000 feet to 20,000 feet above mean sea level, water droplets can remain in a supercooled liquid phase at temperatures below zero degrees Celsius, the freezing point of water.

The supercooled liquid water found at temperatures generally between 0 and 35 below zero - the temperature where supercooled water droplets begin to spontaneously freeze in a process referred to as homogeneous nucleation - can freeze on contact and thus possibly impact aircraft weapons and sensors or control surfaces effecting flight safety.

"Altocumulus clouds are relatively thin mid-level clouds that cannot be reasonably resolved in current atmospheric models. To mitigate their potential impact on Navy and Department of Defense operations, these clouds must be better parameterized" said Dr. Jerry Schmidt, meteorologist, NRL MMD Mesoscale Modeling Section.

In previous ground breaking research, Schmidt discovered that the MCR - a very high resolution C-band dual polarization radar - is precise and versatile enough to resolve individual ice crystals and raindrops within clouds, making it a unique research tool.

In collaboration with Dr. Piotr Flatau of Scripps Institution of Oceanography and independent radar consultant Robert Yates, the team analyzed coincidental aircraft observations, ground-based instrumentation readings, and radar data from the MCR to document the structure of a thin and narrow band of mixed-phase altocumulus clouds.

The group then analyzed the diabatic heating and cooling structure of the altocumulus layer associated with the vertical flux divergence of the longwave and shortwave radiation as well as the evaporation and sublimation of liquid and ice particles over a deep virga layer that extended 1500 meters below the cloud base.

When analyzing the high-resolution observations of the real-world atmosphere, the study found that actual observed processes did not precisely match with existing cloud formation and dissipation theories.

"In particular, it was found that the presence of layer-wide horizontal gradient in the cloud top radiative cooling rates - associated with the magnitude of the cloud liquid water content - creates a circulating flow in the atmosphere," Schmidt said.

"This directs warm and dry air downward over the central portion of the narrow altocumulus cloud band, which begins to evaporate the interior cloud liquid water."

Ultimately, the cloud's longevity or demise then hinges on whether or not a quasi-balanced state can arise between the water production terms within the cloud layer and the radiatively-induced mesoscale subsidence circulation the liquid production ultimately creates.

Fully analyzed results and follow-on field experiments will enable NRL scientists to better understand and model the composition, generation and decay of mid-level, and eventually low and high level clouds. The goal is to develop the capability to provide more accurate tactical scale cloud information to Navy and Department of Defense (DoD) mission planners and warfighting decision makers in support of global operations.

Funded by the Naval Surface Warfare Center, Dahlgren, Va., the project will continue to investigate the potential for these results to be applied to larger-scale thicker and warmer stratiform clouds, as well as higher and colder cirrus clouds. In summer 2015, the group plans to add UAS-based sensors, CLOUDSAT radarand satellite-based LIDAR measurement, and additional surface instrumentation, such as a microwave radiometer, to the next field studies.

.


Related Links
U.S. Naval Research Laboratory (NRL)
The Air We Breathe at TerraDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





BLUE SKY
Molecular snapshots of oxygen formation in photosynthesis
Umea, Sweden (SPX) Jul 14, 2014
Researchers from Umea University have explored two different ways that allow unprecedented experimental insights into the reaction sequence leading to the formation of oxygen molecules in photosynthesis. The two studies have been published in the scientific journal Nature Communications. "The new knowledge will help improving present day synthetic catalysts for water oxidation, which are k ... read more


BLUE SKY
China's biggest moon challenge: returning to earth

Lunar Pits Could Shelter Astronauts, Reveal Details of How 'Man in the Moon' Formed

Manned mission to Moon scheduled by Roscosmos for 2020-2031

Landsat Looks to the Moon

BLUE SKY
India could return to Mars as early as 2017

Curiosity's images show Earth-like soils on Mars

NASA Seeks Proposals for Commercial Mars Data Relay Satellites

Emirates paves way for Middle East space program with mission to Mars

BLUE SKY
Voyager Spacecraft Might Not Have Reached Interstellar Space

New Fort Knox: A means to a solar-system-wide economy

Sierra Nevada Completes Major Dream Chaser NASA CCiCap Milestone

NASA Partners Punctuate Summer with Spacecraft Development Advances

BLUE SKY
Lunar rock collisions behind Yutu damage

China to launch HD observation satellite this year

China's Fast Track To Circumlunar Mission

Chinese moon rover designer shooting for Mars

BLUE SKY
Next ISS Cargo Spacecraft Rolls Out to Pad

Russian cargo craft docks with ISS, science satellite fails

Russian Cargo Craft Launches for 6-Hour Trek to ISS

ATV-5: loaded and locked

BLUE SKY
SpaceX Soft Lands Falcon 9 Rocket First Stage

China to launch satellite for Venezuela

SpaceX Falcon 9 v1.1 Flights Deemed Successful

ISS 'space truck' launch postponed: Arianespace

BLUE SKY
'Challenges' in quest to find water on Earth-like worlds: study

Transiting Exoplanet with Longest Known Year

Brown Dwarfs May Wreak Havoc on Orbits of Nearby Planets

NASA Mission To Reap Bonanza of Earth-sized Planets

BLUE SKY
New material puts a twist in light

Efficient structures help build a sustainable future

Future Electronics May Depend on Lasers, Not Quartz

USAF orders ground approach radar for Saudi Arabia




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.