Subscribe free to our newsletters via your
. 24/7 Space News .




CHIP TECH
NIST chip produces and detects specialized gas for biomedical analysis
by Staff Writers
Washington DC (SPX) May 23, 2014


This is an illustration of a NIST chip that makes polarized xenon gas. Xenon atoms (green) are loaded into the chamber on the left. The xenon flows into the next chamber, where the atoms are polarized through collisions with rubidium atoms (red) that are illuminated with circularly polarized light. Then the xenon flows into the smaller chamber, where its polarization is measured, using the rubidium atoms in the same chamber as magnetometers. Atoms exit the chip from the chamber on the far right. Image courtesy NIST.

A chip-scale device that both produces and detects a specialized gas used in biomedical analysis and medical imaging has been built and demonstrated at the National Institute of Standards and Technology (NIST). Described in Nature Communications,* the new microfluidic chip produces polarized (or magnetized) xenon gas and then detects even the faintest magnetic signals from the gas.

Polarized xenon-with the atoms' nuclear "spins" aligned like bar magnets in the same direction-can be dissolved in liquids and used to detect the presence of certain molecules. A chemical interaction with target molecules subtly alters the magnetic signal from the xenon; by detecting this change researchers can identify the molecules in a complex mixture.

Polarized xenon is also used as a contrast agent to enhance images in experimental magnetic resonance imaging (MRI) of human lungs, but conventional systems for producing and using this gas can be as big as a car.

Researchers from NIST and three other institutions developed the new chip, which might be used to reduce the size and cost of some instruments that, like MRI, rely on nuclear magnetic resonance (NMR).

The chip's sensitive internal detector boosts the response of microfluidic NMR on small samples and eliminates the need for the powerful magnets associated with larger NMR devices such as those used in MRI. The microfabricated chip could be mass produced and integrated easily with existing microfluidic systems.

"We envision this device being an element in a more complex microfluidic NMR system, maybe for medical diagnostics," NIST physicist and co-author John Kitching says.

The new device is related to NIST's chip-scale magnetometer** but has additional capabilities and different applications, Kitching notes. Like the older NIST device, the new chip uses rubidium atoms as magnetometers to detect the xenon polarization, but they also multitask. The novel design also uses the rubidium atoms to polarize the xenon atoms, boosting their NMR response, and mixes the two types of atoms in the same chamber at the detection stage, which enhances the signal strength 500-fold.

The device is housed in a silicon and glass chip about 3centimeters long with four small chambers connected by microchannels. In one chamber, circularly polarized light transfers angular momentum to the rubidium atoms' electrons. The rubidium atoms then exchange spin with the nuclei of the xenon atoms, enhancing their polarization and hence the NMR signal.

The polarized xenon and rubidium atoms then flow into a detection chamber. Thanks to the atoms' magnetic interactions the sensor can detect weak signals corresponding to fewer than 1 trillion polarized xenon atoms, a result competitive with low-field optical magnetometry.

The combination of a xenon polarizer and detector in the same device, together with the extraordinary sensitivity of the chip device, could help make polarized xenon technology portable and less expensive for biomedical and other applications outside research laboratories.

The new chip was fabricated and demonstrated at NIST. Co-authors from Lawrence Berkeley National Laboratory, the University of California at Berkeley and Bar-Ilan University in Israel collaborated on the project, which was supported in part by the U.S. Department of Energy.

*R. Jimenez-Martinez, D.J. Kennedy, M. Rosenbluh, E.A. Donley, S. Knappe, S.J. Seltzer, H.L. Ring, V.S. Bajaj and J. Kitching. Optical hyperpolarization and NMR detection of 129Xe on a microfluidic chip. 2014. Nature Communications. Published online May 20.

**See 2012 NIST Tech Beat article, "NIST Mini-sensor Measures Magnetic Activity in Human Brain," http://www.nist.gov/pml/div688/brain-041912.cfm

.


Related Links
National Institute of Standards and Technology (NIST)
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





CHIP TECH
New analysis eliminates a potential speed bump in quantum computing
San Diego CA (SPX) May 23, 2014
A quantum particle can search for an item in an unsorted "database" by jumping from one item to another in superposition, and it does so faster than a classical computer ever could. This assertion assumes, however, that the particle can directly hop from any item to any other. Any restriction on which items the particle can directly hop to could slow down the search. "Intuition says ... read more


CHIP TECH
LRO View of Earth

Saturn in opposition tonight, will appear next to the moon

Russia to begin Moon colonization in 2030

Astrobotic Partners With NASA To Develop Robotic Lunar Landing Capability

CHIP TECH
When fantasy becomes reality: first seeds to be planted soon on Mars

NASA's Saucer-Shaped Craft Preps for Flight Test

NASA Mars Rover Curiosity Wrapping Up Waypoint Work

Cascading dunes in a martian crater

CHIP TECH
Britain's Longitude Prize back after 300-year absence

Sea level rise forces US space agency to retreat

A light-speed voyage to the distant future

US spacecraft enters giant asteroid's orbit

CHIP TECH
Moon rover Yutu comes closer to public

The Phantom Tiangong

New satellite launch center to conduct joint drill

China issues first assessment on space activities

CHIP TECH
New ISS Expedition Unaffected by Proton Crash

US-Russian Tensions Roiling Outer Space Cooperation

Rounding up the BCATs on the ISS

Botanical Studies, Dragon Departure Preps for ISS Crew

CHIP TECH
SpaceX-3 Mission To Return Dragon's Share of Space Station Science

SpaceX supply capsule heads back to Earth

SpaceX's Dragon spacecraft returns to Earth from space station

Replacing Russian-made rocket engines is not easy

CHIP TECH
Giant telescope tackles orbit and size of exoplanet

Odd planet, so far from its star

New Exomoon Hunting Technique Could Find Solar System-like Moons

Length of Exoplanet Day Measured for First Time

CHIP TECH
Is there really cash in your company's trash?

Computer simulations enable better calculation of interfacial tension

Professors' super waterproof surfaces cause water to bounce like a ball

New Technique Safely Penetrates Top Coat for Perfect Paint Job




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.