. 24/7 Space News .
STELLAR CHEMISTRY
NICER delivers best-ever pulsar measurements and first surface map
by Jeanette Kazmierczak for GSFC News
Greenbelt MD (SPX) Dec 13, 2019

Simulation of a possible quadrupole magnetic field configuration for a pulsar with hot spots in only the southern hemisphere. See a gif animation here. See a detailed video presentation here

Astrophysicists are redrawing the textbook image of pulsars, the dense, whirling remains of exploded stars, thanks to NASA's Neutron star Interior Composition Explorer (NICER), an X-ray telescope aboard the International Space Station. Using NICER data, scientists have obtained the first precise and dependable measurements of both a pulsar's size and its mass, as well as the first-ever map of hot spots on its surface.

The pulsar in question, J0030+0451 (J0030 for short), lies in an isolated region of space 1,100 light-years away in the constellation Pisces. While measuring the pulsar's heft and proportions, NICER revealed that the shapes and locations of million-degree "hot spots" on the pulsar's surface are much stranger than generally thought.

"From its perch on the space station, NICER is revolutionizing our understanding of pulsars," said Paul Hertz, astrophysics division director at NASA Headquarters in Washington. "Pulsars were discovered more than 50 years ago as beacons of stars that have collapsed into dense cores, behaving unlike anything we see on Earth. With NICER we can probe the nature of these dense remnants in ways that seemed impossible until now."

When a massive star dies, it runs out of fuel, collapses under its own weight and explodes as a supernova. These stellar deaths can leave behind neutron stars, which pack more mass than our Sun into a sphere roughly as wide as the island of Manhattan is long. Pulsars, which are one class of neutron star, spin up to hundreds of times each second and sweep beams of energy toward us with every rotation. J0030 revolves 205 times per second.

For decades, scientists have been trying to figure out exactly how pulsars work. In the simplest model, a pulsar has a powerful magnetic field shaped much like a household bar magnet. The field is so strong it rips particles from the pulsar's surface and accelerates them. Some particles follow the magnetic field and strike the opposite side, heating the surface and creating hot spots at the magnetic poles.

The whole pulsar glows faintly in X-rays, but the hot spots are brighter. As the object spins, these spots sweep in and out of view like the beams of a lighthouse, producing extremely regular variations in the object's X-ray brightness. But the new NICER studies of J0030 show pulsars aren't so simple.

Using NICER observations from July 2017 to December 2018, two groups of scientists mapped J0030's hot spots using independent methods and converged on similar results for its mass and size. A team led by Thomas Riley, a doctoral student in computational astrophysics, and his supervisor Anna Watts, a professor of astrophysics at the University of Amsterdam, determined the pulsar is around 1.3 times the Sun's mass and 15.8 miles (25.4 kilometers) across.

Cole Miller, an astronomy professor at the University of Maryland (UMD) who led the second team, found J0030 is about 1.4 times the Sun's mass and slightly larger, about 16.2 miles (26 kilometers) wide.

"When we first started working on J0030, our understanding of how to simulate pulsars was incomplete, and it still is," Riley said. "But thanks to NICER's detailed data, open-source tools, high-performance computers and great teamwork, we now have a framework for developing more realistic models of these objects."

A pulsar is so dense its gravity warps nearby space-time - the "fabric" of the universe as described by Einstein's general theory of relativity - in much the same way as a bowling ball on a trampoline stretches the surface. Space-time is so distorted that light from the side of the pulsar facing away from us is "bent" and redirected into our view. This makes the star look bigger than it is.

The effect also means the hot spots may never completely disappear as they rotate to the far side of the star. NICER measures the arrival of each X-ray from a pulsar to better than a hundred nanoseconds, a precision about 20 times greater than previously available, so scientists can take advantage of this effect for the first time.

"NICER's unparalleled X-ray measurements allowed us to make the most precise and reliable calculations of a pulsar's size to date, with an uncertainty of less than 10%," Miller said. "The whole NICER team has made an important contribution to fundamental physics that is impossible to probe in terrestrial laboratories."

Our view from Earth looks onto J0030's northern hemisphere. When the teams mapped the shapes and locations of J0030's spots, they expected to find one there based on the textbook image of pulsars, but didn't. Instead, the researchers identified up to three hot "spots," all in the southern hemisphere.

Riley and his colleagues ran rounds of simulations using overlapping circles of different sizes and temperatures to recreate the X-ray signals. Performing their analysis on the Dutch national supercomputer Cartesius took less than a month - but would have required around 10 years on a modern desktop computer. Their solution identifies two hot spots, one small and circular and the other long and crescent-shaped.

Miller's group performed similar simulations, but with ovals of different sizes and temperatures, on UMD's Deepthought2 supercomputer. They found two possible and equally likely spot configurations. One has two ovals that closely match the pattern found by Riley's team. The second solution adds a third, cooler spot slightly askew of the pulsar's south rotational pole.

Previous theoretical predictions suggested that hot spot locations and shapes could vary, but the J0030 studies are the first to map these surface features. Scientists are still trying to determine why J0030's spots are arranged and shaped as they are, but for now it's clear that pulsar magnetic fields are more complicated than the traditional two-pole model.

NICER's main science goal is to precisely determine the masses and sizes of several pulsars. With this information scientists will finally be able to decipher the state of matter in the cores of neutron stars, matter crushed by tremendous pressures and densities that cannot be replicated on Earth.

"It's remarkable, and also very reassuring, that the two teams achieved such similar sizes, masses and hot spot patterns for J0030 using different modeling approaches," said Zaven Arzoumanian, NICER science lead at NASA's Goddard Space Flight Center in Greenbelt, Maryland. "It tells us NICER is on the right path to help us answer an enduring question in astrophysics: What form does matter take in the ultra-dense cores of neutron stars?"

NICER is an Astrophysics Mission of Opportunity within NASA's Explorers program, which provides frequent flight opportunities for world-class scientific investigations from space utilizing innovative, streamlined and efficient management approaches within the heliophysics and astrophysics science areas. NASA's Space Technology Mission Directorate supports the SEXTANT component of the mission, demonstrating pulsar-based spacecraft navigation.

A series of papers analyzing NICER's observations of J0030 appears in a focus issue of The Astrophysical Journal Letters and is now available online.

See a gif animation here.

See a detailed video presentation here


Related Links
Neutron star Interior Composition Explorer (NICER)
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
Russian astrophysicists discovered a neutron star with an unusual magnetic field structure
Moscow, Russia (SPX) Dec 10, 2019
Scientists from Moscow Institute for Physics and Technology, Space Research Institute of the Russian Academy of Sciences (IKI), and Pulkovo Observatory discovered a unique neutron star, the magnetic field of which is apparent only when the star is seen under a certain angle relative to the observer. Previously, all neutron stars could be grouped into two big families: the first one included objects where the magnetic field manifests itself during the whole spin cycle, and the other one included objects ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Novel camera gives scientists "Night Vision" from ISS

Russian cargo ship docks at International Space Station

Russian cosmonauts planning two spacewalks at ISS in 2020

Child's play: Coding booms among Chinese children

STELLAR CHEMISTRY
Jeff Bezos's Blue Origin rocket makes 12th test flight

SpaceX Dragon docks with International Space Station

NASA break SLS tank to test extreme limits

NASA gears up to test fire new SLS moon rocket in Mississippi

STELLAR CHEMISTRY
Two rovers to toll on Mars Again in 2020

NASA's treasure map for water ice on Mars

Mars: we may have solved the mystery of how its landslides form

Solving fossil mystery could aid quest for ancient life on Mars

STELLAR CHEMISTRY
China sends six satellites into orbit with single rocket

China launches satellite service platform

China plans to complete space station construction around 2022: expert

China conducts hovering and obstacle avoidance test in public for first Mars lander mission

STELLAR CHEMISTRY
Iridium Continues GMDSS Readiness with Announcement of Launch Partners

Nilesat-301 satellite to be built by Thales Alenia Space

SpaceChain sends blockchain tech to ISS for Fintech market

First launch of UK's OneWeb satellites from Baikonur now set for 30 Jan

STELLAR CHEMISTRY
OneWeb to use advanced grappling tech from Altius Space Machines

ESA commissions world's first space debris removal

SN Now: The Final Installment of SCaN Now

ESA to fund world's first space debris removal mission

STELLAR CHEMISTRY
Exoplanet axis study boosts hopes of complex life, just not next door

Hidden giant planet around tiny white dwarf star

Scientists figure out how accumulating dust particles become planets

How planets may form after dust sticks together

STELLAR CHEMISTRY
The PI's Perspective: What a Year, What a Decade!

Reports of Jupiter's Great Red Spot demise greatly exaggerated

Aquatic rover goes for a drive under the ice

NASA scientists confirm water vapor on Europa









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.