. 24/7 Space News .
STELLAR CHEMISTRY
NASA's Webb Telescope to witness galactic infancy
by Staff Writers
Greenbelt MD (SPX) Oct 05, 2017


With NIRCam, the team will observe a piece of the GOODS region near their selected section of HUDF. The entire GOODS survey field includes observations from Hubble, Spitzer, and several other space observatories.

Scientists will use NASA's James Webb Space Telescope to study sections of the sky previously observed by NASA's Great Observatories, including the Hubble Space Telescope and the Spitzer Space Telescope, to understand the creation of the universe's first galaxies and stars.

After it launches and is fully commissioned, scientists plan to focus Webb telescope on sections of the Hubble Ultra-Deep Field (HUDF) and the Great Observatories Origins Deep Survey (GOODS). These sections of sky are among Webb's list of targets chosen by guaranteed time observers, scientists who helped develop the telescope and thus get to be among the first to use it to observe the universe. The group of scientists will primarily use Webb's mid-infrared instrument (MIRI) to examine a section of HUDF, and Webb's near infrared camera (NIRCam) to image part of GOODS.

"By mixing [the data from] these instruments, we'll get information about the current star formation rate, but we'll also get information about the star formation history," explained Hans Ulrik Norgaard-Nielsen, an astronomer at the Danish Space Research Institute in Denmark and the principal investigator for the proposed observations.

Pablo Perez-Gonzalez, an astrophysics professor at the Complutense University of Madrid in Spain and one of several co-investigators on Norgaard-Nielsen's proposed observation, said they will use Webb to observe about 40 percent of the HUDF area with MIRI, in roughly the same location that ground-based telescopes like the Atacama Large Millimeter Array (ALMA) and the Very Large Telescope array (VLT) obtained ultra-deep field data.

The iconic HUDF image shows about 10,000 galaxies in a tiny section of the sky, equivalent to the amount of sky you would see with your naked eye if you looked at it through a soda straw. Many of these galaxies are very faint, more than 1 billion times fainter than what the naked human eye can see, marking them as some of the oldest galaxies within the visible universe.

With its powerful spectrographic instruments, Webb will see much more detail than imaging alone can provide. Spectroscopy measures the spectrum of light, which scientists analyze to determine physical properties of what is being observed, including temperature, mass, and chemical composition. Perez-Gonzalez explained this will allow scientists to study how gases transformed into stars in the first galaxies, and to better understand the first phases in the formation of supermassive black holes, including how those black holes affect the formation of their home galaxy. Astronomers believe the center of nearly every galaxy contains a supermassive black hole, and that these black holes are related to galactic formation.

MIRI can observe in the infrared wavelength range of 5 to 28 microns. Perez-Gonzalez said they will use the instrument to observe a section of HUDF in 5.6 microns, which Spitzer is capable of, but that Webb will be able to see objects 250 times fainter and with eight times more spatial resolution. In this case, spatial resolution is the ability of an optical telescope, such as Webb, to see the smallest details of an object.

Perez-Gonzalez said in the area of HUDF they will observe, Hubble was able to see about 4,000 galaxies. He added that, with Webb, they "will detect around 2,000 to 2,500 galaxies, but in a completely different spectral band, so many galaxies will be quite different from the ones that [Hubble] detected."

With NIRCam, the team will observe a piece of the GOODS region near their selected section of HUDF. The entire GOODS survey field includes observations from Hubble, Spitzer, and several other space observatories.

"These NIRCam images will be taken in three bands, and they will be the deepest obtained by any guaranteed time observation team," explained Perez-Gonzalez.

NIRCam can observe in the infrared wavelength range of 0.6 to 5 microns. Perez-Gonzalez explained they will use it to observe a section of GOODS in the 1.15 micron band, which Hubble is capable of, but that Webb will be able to see objects 50 times fainter and with two times more spatial resolution. They will also use it to observe the 2.8 and 3.6 micron bands. Spitzer is able to do this as well, but Webb will be able to observe objects nearly 100 times fainter and with eight times greater spatial resolution.

Because the universe is expanding, light from distant objects in the universe is "redshifted," meaning the light emitted by those objects is visible in the redder wavelengths by the time it reaches us. The objects farthest away from us, those with the highest redshifts, have their light shifted into the near- and mid-infrared part of the electromagnetic spectrum. The Webb telescope is specifically designed to observe the objects in that area of the spectrum, which makes it ideal for looking at the early universe.

"When you build an observatory with unprecedented capabilities, most probably the most interesting results will not be those that you can expect or predict, but those that no one can imagine," said Perez-Gonzalez.

STELLAR CHEMISTRY
Engineers Warm NASA's Webb Telescope as End of Cryogenic Testing Nears
Houston TX (SPX) Oct 03, 2017
The temperature of Chamber A at NASA's Johnson Space Center in Houston has begun to rise, signaling the beginning of the end of James Webb Space Telescope's cryogenic testing. On Sept. 27, engineers began to warm Chamber A to bring the Webb telescope back to room temperature - the last step before the chamber's massive, monolithic door unseals and Webb emerges in October. Everyone can watc ... read more

Related Links
Webb telescope
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Fast-moving space industries create new ethical challenges

OECD calls for tourism to be more sustainable

Space Cooperation Between China, Russia Needs Long-Term Mechanism

NASA's New Hubble E-Book Series Dives into the Solar System and Beyond

STELLAR CHEMISTRY
mu Space partners with Blue Origin to launch geostationary satellite

Arianespace to launch COSMO-SkyMed satellites manufactured by Thales

New Zealand opens first rocket launch site

Arianespace signs contract for 10 Vega and Vega C launchers

STELLAR CHEMISTRY
Lockheed Martin Reveals New Details to its Mars Base Camp Vision

Lockheed Martin unveils reusable water-powered Mars lander

Methane belches kept water flowing on ancient Mars

SpaceX's Musk unveils plan to reach Mars by 2022

STELLAR CHEMISTRY
UN official commends China's role in space cooperation

Mars probe to carry 13 types of payload on 2020 mission

China's cargo spacecraft separates from Tiangong-2 space lab

Work on China's mission to Mars 'well underway'

STELLAR CHEMISTRY
L-Band Satellite Operators Need To Reposition

GomSpace and Luxembourg to develop space activities in the Grand Duchy

Spacepath Communications Acquires Tango Wave

Brodeur Partners Launches Entrepreneurial Space Group

STELLAR CHEMISTRY
Sputnik, the tiny sphere that launched the space race

New laser sensor could detect explosives, dangerous gases more quickly

Germany-based Hensoldt acquires Kelvin Hughes

UV-irradiated amorphous ice behaves like liquid at low temperatures

STELLAR CHEMISTRY
Glenn Tests Thruster Bound for Metal World

Searching for Distant Worlds With a Flying Telescope

MATISSE to Shed Light on the Formation of Earth and Planets

Scientists propose new concept of terrestrial planet formation

STELLAR CHEMISTRY
Helicopter test for Jupiter icy moons radar

Solving the Mystery of Pluto's Giant Blades of Ice

Global Aerospace Corporation to present Pluto lander concept to NASA

Pluto features given first official names









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.