Free Newsletters - Space News - Defense Alert - Environment Report - Energy Monitor
. 24/7 Space News .




CARBON WORLDS
NASA's Spitzer Finds Solid Buckyballs in Space
by Staff Writers
Pasadena CA (JPL) Feb 23, 2012


NASA's Spitzer Space Telescope has detected the solid form of buckyballs in space for the first time. To form a solid particle, the buckyballs must stack together, as illustrated in this artist's concept showing the very beginnings of the process. The buckyball particles were spotted around a small, hot star - a member of a pair of stars, called XX Ophiuchi, located 6,500 light-years from Earth. The discovery implies that the little carbon spheres are prevalent in certain stellar regions of the cosmos. Unlike a gas, a solid is more dense, requiring large quantities of molecules to form. The infrared observatory first detected buckyballs as a gas in 2010, the first time the material was ever definitively observed in space. Buckyballs are made up of 60 carbon atoms arranged as hollow spheres that resemble soccer balls. They also look like the geodesic domes of the late architect Buckminister Fuller, hence their name. Image credit: NASA/JPL-Caltech.

Astronomers using data from NASA's Spitzer Space Telescope have, for the first time, discovered buckyballs in a solid form in space. Prior to this discovery, the microscopic carbon spheres had been found only in gas form in the cosmos.

Formally named buckministerfullerene, buckyballs are named after their resemblance to the late architect Buckminster Fuller's geodesic domes. They are made up of 60 carbon atoms arranged into a hollow sphere, like a soccer ball.

Their unusual structure makes them ideal candidates for electrical and chemical applications on Earth, including superconducting materials, medicines, water purification and armor.

In the latest discovery, scientists using Spitzer detected tiny specks of matter, or particles, consisting of stacked buckyballs. They found the particles around a pair of stars called "XX Ophiuchi," 6,500 light-years from Earth, and detected enough to fill the equivalent in volume to 10,000 Mount Everests.

"These buckyballs are stacked together to form a solid, like oranges in a crate," said Nye Evans of Keele University in England, lead author of a paper appearing in the Monthly Notices of the Royal Astronomical Society.

"The particles we detected are miniscule, far smaller than the width of a hair, but each one would contain stacks of millions of buckyballs."

Buckyballs were detected definitively in space for the first time by Spitzer in 2010. Spitzer later identified the molecules in a host of different cosmic environments. It even found them in staggering quantities, the equivalent in mass to 15 Earth moons, in a nearby galaxy called the Small Magellanic Cloud.

In all of those cases, the molecules were in the form of gas. The recent discovery of buckyballs particles means that large quantities of these molecules must be present in some stellar environments in order to link up and form solid particles.

The research team was able to identify the solid form of buckyballs in the Spitzer data because they emit light in a unique way that differs from the gaseous form.

"This exciting result suggests that buckyballs are even more widespread in space than the earlier Spitzer results showed," said Mike Werner, project scientist for Spitzer at NASA's Jet Propulsion Laboratory in Pasadena, Calif. "They may be an important form of carbon, an essential building block for life, throughout the cosmos."

Buckyballs have been found on Earth in various forms. They form as a gas from burning candles and exist as solids in certain types of rock, such as the mineral shungite found in Russia, and fulgurite, a glassy rock from Colorado that forms when lightning strikes the ground. In a test tube, the solids take on the form of dark, brown "goo."

"The window Spitzer provides into the infrared universe has revealed beautiful structure on a cosmic scale," said Bill Danchi, Spitzer program scientist at NASA Headquarters in Washington.

"In yet another surprise discovery from the mission, we're lucky enough to see elegant structure at one of the smallest scales, teaching us about the internal architecture of existence."

Other authors of the paper include Jacco van Loon of Keele University; CharlesWoodward and Robert Gehrz of the University of Minnesota, Twin Cities; Geoffrey Clayton of Louisiana State University, Baton Rouge; Andrew Helton of NASA Ames Research Center, Moffett Field, Calif.; Mark Rushton and Strewart Eyres of the University of Central Lancashire, United Kingdom; Joachim Krautter of Landessternewarte Heidelberg, Germany; Sumner Starrfield of Arizona State University, Phoenix; and Mark Wagner of the Large Binocular Telescope Observatory, Mount Graham, Ariz.

.


Related Links
Spitzer at Caltech
Spitzer at NASA
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





CARBON WORLDS
Shear stiffness and friction mechanics of single-layer graphene measured for the first time
Bristol, UK (SPX) Feb 17, 2012
Researchers from the University of Bristol have measured and identified for the first time the stress and strain shear modulus and internal friction of graphene sheets. Graphene is a material that has many potential groundbreaking uses in the electronics and composites industry. The research, in collaboration with the US Office of Naval Research, is published in Nano Letters. Graphen ... read more


CARBON WORLDS
SD-built camera spots tiny shifts on moon

Back to the Moon A Modern Redux

X-rays illuminate the interior of the Moon

NASA Spacecraft Reveals Recent Geological Activity on the Moon

CARBON WORLDS
Mars rocks indicate relatively recent quakes, volcanism, on Red Planet

Dusty Mars Rover's Self-Portrait

Rock Studies Continue for Opportunity

ISS may become Martian flight simulator

CARBON WORLDS
Cosmonaut Testing at Star City Deceptively Simple

Stark warning emerges from science summit

Glenn: I don't think of myself as a hero

ASU professor uses Star Trek themes to communicate science

CARBON WORLDS
Launch of China's manned spacecraft Shenzhou-9 scheduled

Shenzhou 9 To Carry 3 Astronauts To Tiangong-1 Space Station

China to launch spacecraft in June: report

Is Shenzhou Unsafe?

CARBON WORLDS
Fifth ATV named after Georges Lemaitre

Space station panel installation delayed

Russian cosmonauts begin ISS spacewalk

Advanced Communications Testbed for Space Station

CARBON WORLDS
Sea Launch on Track to Loft Intelsat 19

NuSTAR Mated to its Rocket

Rocket to be launched from Poker Flat Research Range

UA Huntsville scientific team helping Japanese space program launch safely

CARBON WORLDS
Hubble Reveals a New Class of Extrasolar Planet

US scientists discover new 'waterworld' planet

Scattered Light Could Reveal Alien Atmospheres

Searching for Planets in Clouds of Dust

CARBON WORLDS
China to boost use of rare earths in manufacturing

HP plans workplace tablet by year's end: Whitman

Lockheed Martin Foliage Penetrating Reconnaissance Radar Deployed

Shanghai court throws out case against Apple




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement