. 24/7 Space News .
SOLAR SCIENCE
NASA sounding rocket instrument spots signatures of long-sought small solar flares
by Sarah Frazier for GSFC News
Greenbelt MD (SPX) Oct 25, 2017


The NASA-funded FOXSI instrument captured new evidence of small solar flares, called nanoflares, during its December 2014 flight on a suborbital sounding rocket. Nanoflares could help explain why the Sun's atmosphere, the corona, is so much hotter than the surface. Here, FOXSI's observations of hard X-rays are shown in blue, superimposed over a soft X-ray image of the Sun from JAXA and NASA's Hinode solar-observing satellite.

Like most solar sounding rockets, the second flight of the FOXSI instrument - short for Focusing Optics X-ray Solar Imager - lasted 15 minutes, with just six minutes of data collection. But in that short time, the cutting-edge instrument found the best evidence to date of a phenomenon scientists have been seeking for years: signatures of tiny solar flares that could help explain the mysterious extreme heating of the Sun's outer atmosphere.

FOXSI detected a type of light called hard X-rays - whose wavelengths are much shorter than the light humans can see - which is a signature of extremely hot solar material, around 18 million degrees Fahrenheit. These kinds of temperatures are generally produced in solar flares, powerful bursts of energy. But in this case, there was no observable solar flare, meaning the hot material was most likely produced by a series of solar flares so small that they were undetectable from Earth: nanoflares. The results were published Oct. 9, 2017, in Nature Astronomy.

"The key to this result is the sensitivity in hard X-ray measurements," said Shin-nosuke Ishikawa, a solar physicist at the Japan Aerospace Exploration Agency, or JAXA, and lead author on the study. "Past hard X-ray instruments could not detect quiet active regions, and combination of new technologies enables us to investigate quiet active regions by hard X-rays for the first time."

These observations are a step toward understanding the coronal heating problem, which is how scientists refer to the extraordinarily - and unexpectedly - high temperatures in the Sun's outer atmosphere, the corona. The corona is hundreds to thousands of times hotter than the Sun's visible surface, the photosphere. Because the Sun produces heat at its core, this runs counter to what one would initially expect: normally the layer closest to a source of heat, the Sun's surface, in this case, would have a higher temperature than the more distant atmosphere.

"If you've got a stove and you take your hand farther away, you don't expect to feel hotter than when you were close," said Lindsay Glesener, project manager for FOXSI-2 at the University of Minnesota and an author on the study.

The cause of these counterintuitively high temperatures is an outstanding question in solar physics. One possible solution to the coronal heating problem is the constant eruption of tiny solar flares in the solar atmosphere, so small that they can't be directly detected. In aggregate, these nanoflares could produce enough heat to raise the temperature of the corona to the millions of degrees that we observe.

One of the consequences of nanoflares would be pockets of superheated plasma. Plasma at these temperatures emits light in hard X-rays, which are notoriously difficult to detect. For instance, NASA's RHESSI satellite - short for Reuven Ramaty High Energy Solar Spectroscopic Imager - launched in 2002, uses an indirect technique to measure hard X-rays, limiting how precisely we can pinpoint the location of superheated plasma. But with the cutting-edge optics available now, FOXSI was able to use a technique called direct focusing that can keep track of where the hard X-rays originate on the Sun.

"It's really a completely transformative way of making this type of measurement," said Glesener. "Even just on a sounding rocket experiment looking at the Sun for about six minutes, we had much better sensitivity than a spacecraft with indirect imaging."

FOXSI's measurements - along with additional X-ray data from the JAXA and NASA Hinode solar observatory - allow the team to say with certainty that the hard X-rays came from a specific region on the Sun that did not have any detectable larger solar flares, leaving nanoflares as the only likely instigator.

"This is a proof of existence for these kinds of events," said Steve Christe, the project scientist for FOXSI at NASA's Goddard Space Flight Center in Greenbelt, Maryland, and an author on the study. "There's basically no other way for these X-rays to be produced, except by plasma at around 10 million degrees Celsius [18 million degrees Fahrenheit]. This points to these small energy releases happening all the time, and if they exist, they should be contributing to coronal heating."

There are still questions to be answered, like: How much heat do nanoflares actually release into the corona?

"This particular observation doesn't tell us exactly how much it contributes to coronal heating," said Christe. "To fully solve the coronal heating problem, they would need to be happening everywhere, even outside of the region observed here."

Hoping to build up a more complete picture of nanoflares and their contribution to coronal heating, Glesener is leading a team to launch a third iteration of the FOXSI instrument on a sounding rocket in summer 2018. This version of FOXSI will use new hardware to eliminate much of the background noise that the instrument sees, allowing for even more precise measurements.

A team led by Christe was also selected to undertake a concept study developing the FOXSI instrument for a possible spaceflight as part of the NASA Small Explorers program.

Research paper

SOLAR SCIENCE
Scientists propose space shield to protect Earth from solar storms
Washington (UPI) Oct 5, 2017
If governments and their space agencies are serious about protecting Earth from solar storms, one team of researchers argues a giant space shield is the most logical solution. Much attention is paid to the threat of comets and asteroids. In the past, violent collisions have triggered mass extinctions. Solar storms - intense waves of high energy particles flung into space during coronal ... read more

Related Links
Goddard Space Flight Center
Solar Science News at SpaceDaily


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SOLAR SCIENCE
Spacewalkers fix robotic arm in time to grab next cargo ship

NASA develops and tests new housing for in-orbit science payloads

Plants and psychological well-being in space

Russia's space agency says glitch in manned Soyuz landing

SOLAR SCIENCE
NASA awards launch contracts for Landsat 9 and Sentinel-6A

It's a success! Blue Origin conducts first hot-fire test of BE-4 engine

ESA role in Europe's first all-electric telecom satellite

Lockheed Martin Launches Second Cycle of 'Girls' Rocketry Challenge' in Japan

SOLAR SCIENCE
Mars Rover Mission Progresses Toward Resumed Drilling

Mine craft for Mars

Opportunity spends the week imaging Perseverance Valley

Solar eruptions could electrify Martian moons

SOLAR SCIENCE
Space will see Communist loyalty: Chinese astronaut

China launches three satellites

Mars probe to carry 13 types of payload on 2020 mission

UN official commends China's role in space cooperation

SOLAR SCIENCE
Myanmar to launch own satellite system-2 in 2019: vice president

Eutelsat's Airbus-built full electric EUTELSAT 172B satellite reaches geostationary orbit

Turkey, Russia to Enhance Cooperation in the Field of Space Technologies

SpaceX launches 10 satellites for Iridium mobile network

SOLAR SCIENCE
These headsets are made for walking over Mars

Xenesis Licenses Cutting Edge IP from NASA/JPL

Dutch open 'world's first 3D-printed bridge'

Using space to study ultra-cold materials

SOLAR SCIENCE
From Comets Come Planets

New NASA study improves search for habitable worlds

A star that devoured its own planets

Astronomers find potential solution into how planets form

SOLAR SCIENCE
Haumea, the most peculiar of Pluto companions, has a ring around it

Ring around a dwarf planet detected

Helicopter test for Jupiter icy moons radar

Solving the Mystery of Pluto's Giant Blades of Ice









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.