. 24/7 Space News .
SOLAR SCIENCE
NASA directly observes fundamental process of nature for 1st time
by Staff Writers
Greenbelt MD (SPX) May 17, 2016


The four Magnetospheric Multiscale, or MMS, spacecraft (shown here in an artist's concept) have now made more than 4,000 trips through the boundaries of Earth's magnetic field, gathering observations of our dynamic space environment. Image courtesy NASA/Goddard/Conceptual Image Lab.

Like sending sensors up into a hurricane, NASA has flown four spacecraft through an invisible maelstrom in space, called magnetic reconnection. Magnetic reconnection is one of the prime drivers of space radiation and so it is a key factor in the quest to learn more about our space environment and protect our spacecraft and astronauts as we explore farther and farther from our home planet.

Space is a better vacuum than any we can create on Earth, but it does contain some particles - and it's bustling with activity. It overflows with energy and a complex system of magnetic fields. Sometimes, when two sets of magnetic fields connect, an explosive reaction occurs: As the magnetic fields re-align and snap into a new formation they send particles zooming off in jets.

A new paper printed on May 12, 2016, in Science provides the first observations from inside a magnetic reconnection event. The research shows that magnetic reconnection is dominated by the physics of electrons - thus providing crucial information about what powers this fundamental process in nature.

The effects of this sudden release of particles and energy - such as giant eruptions on the sun, the aurora, radiation storms in near-Earth space, high energy cosmic particles that come from other galaxies - have been observed throughout the solar system and beyond. But we have never been able to witness the phenomenon of magnetic reconnection directly. Satellites have observed tantalizing glances of particles speeding by, but not the impetus - like seeing the debris flung out from a tornado, but never seeing the storm itself.

"We developed a mission, the Magnetospheric Multiscale mission, that for the first time would have the precision needed to gather observations in the heart of magnetic reconnection," said Jim Burch, the principal investigator for MMS at the Southwest Research Institute in San Antonio, Texas, and the first author of the Science paper. "We received results faster than we could have expected. By seeing magnetic reconnection in action, we have observed one of the fundamental forces of nature."

MMS is made of four identical spacecraft that launched in March 2015. They fly in a pyramid formation to create a full 3-D map of any phenomena they observe. On Oct. 16, 2015, the spacecraft traveled straight through a magnetic reconnection event at the boundary where Earth's magnetic field bumps up against the sun's magnetic field.

In only a few seconds, the 25 sensors on each of the spacecraft collected thousands of observations. This unprecedented time cadence opened the door for scientists to track better than ever before how the magnetic and electric fields changed, as well as the speeds and direction of the various charged particles.

The science of reconnection springs from the basic science of electromagnetics, which dominates most of the universe and is a force as fundamental in space as gravity is on Earth. Any set of magnetic fields can be thought of as a row of lines. These field lines are always anchored to some body - a planet, a star - creating a giant magnetic network surrounding it. It is at the boundaries of two such networks where magnetic reconnection happens.

Imagine rows of magnetic field lines moving toward each other at such a boundary. (The boundary that MMS travels through, for example, is the one where Earth's fields meet the sun's.) The field lines are sometimes traveling in the same direction, and don't have much effect on each other, like two water currents flowing along side each other.

But if the two sets of field lines point in opposite directions, the process of realigning is dramatic. It can be hugely explosive, sending particles hurtling off at near the speed of light. It can also be slow and steady. Either way it releases a huge amount of energy.

"One of the mysteries of magnetic reconnection is why it's explosive in some cases, steady in others, and in some cases, magnetic reconnection doesn't occur at all," said Tom Moore, the mission scientist for MMS at NASA's Goddard Space Flight Center in Greenbelt, Maryland.

Whether explosive or steady, the local particles are caught up in the event, hurled off to areas far away, crossing magnetic boundaries they never could have crossed otherwise. At the edges of Earth's magnetic environment, the magnetosphere, such events allow solar radiation to enter near-Earth space.

"From previous satellites' measurements, we know that the magnetic fields act like a slingshot, sending the protons accelerating out," said Burch. "The decades-old mystery is what do the electrons do, and how do the two magnetic fields interconnect. Satellite measurements of electrons have been too slow by a factor of 100 to sample the magnetic reconnection region. The precision and speed of the MMS measurements, however, opened up a new window on the universe, a new 'microscope' to see reconnection."

With this new set of observations, MMS tracked what happens to electrons during magnetic reconnection. As the four spacecraft flew across the magnetosphere's boundary they flew directly through what's called the dissipation region where magnetic reconnection occurred. The observations were able to track how the magnetic fields suddenly shifted, and also how the particles moved away.

The observations show that the electrons shot away in straight lines from the original event at hundreds of miles per second, crossing the magnetic boundaries that would normally deflect them. Once across the boundary, the particles curved back around in response to the new magnetic fields they encountered, making a U-turn.

These observations align with a computer simulation known as the crescent model, named for the characteristic crescent shapes that the graphs show to represent how far across the magnetic boundary the electrons can be expected to travel before turning around again.

A surprising result was that at the moment of interconnection between the sun's magnetic field lines and those of Earth the crescents turned abruptly so that the electrons flowed along the field lines. By watching these electron tracers, MMS made the first observation of the predicted breaking and interconnection of magnetic fields in space.

"The data showed the entire process of magnetic reconnection to be fairly orderly and elegant," said Michael Hesse, a space scientist at Goddard who first developed the crescent model. "There doesn't seem to be much turbulence present, or at least not enough to disrupt or complicate the process."

Spotting the persistent characteristic crescent shape in the electron distributions suggests that it is the physics of electrons that is at the heart of understanding how magnetic field lines accelerate the particles.

"This shows us that the electrons move in such a way that electric fields are established and these electric fields in turn produce a flash conversion of magnetic energy," said Roy Torbert, a scientist at the Space Science Center at the University of New Hampshire in Durham, who is a co-author on the paper.

"The encounter that our instruments were able to measure gave us a clearer view of an explosive reconnection energy release and the role played by electron physics."

Since it launched, MMS has made more than 4,000 trips through the magnetic boundaries around Earth, each time gathering information about the way the magnetic fields and particles move. After its first direct observation of magnetic reconnection, it has flown through such an event five more times, providing more information about this fundamental process.

As the mission continues, the team can adjust the formation of the MMS spacecraft bringing them closer together, which provides better viewing of electron paths, or further apart, which provides better viewing of proton paths.

Each set of observations contributes to explaining different aspects of magnetic reconnection. Together, such information will help scientists map out the details of our space environment - crucial information as we journey ever farther beyond our home planet.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Goddard Space Flight Center
Solar Science News at SpaceDaily






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
SOLAR SCIENCE
MMS Puts Magnetic Reconnection Under the Microscope
San Antonio TX (SPX) May 16, 2016
A team led by Southwest Research Institute (SwRI) has made the first direct detection of the source of magnetic reconnection. Analyzing data from NASA's Magnetospheric Multiscale (MMS) mission, scientists have observed how this explosive physical process converts stored magnetic energy into kinetic energy and heat. "Just as in astronomy a new telescope like Hubble opens a new window on the ... read more


SOLAR SCIENCE
NASA research gives new insights into how the Moon got inked

First rocket made ready for launch at Vostochny spaceport

Supernova iron found on the moon

Russia to shift all Lunar launches to Vostochny Cosmodrome

SOLAR SCIENCE
The rise and fall of Martian lakes

Opportunity microscopic imaging camera back to normal operations

Second cycle of Martian seasons completing for Curiosity Rover

Flying observatory detects atomic oxygen in Martian atmosphere

SOLAR SCIENCE
Out of this world: 'Moon and Mars veggies' grow in Dutch greenhouse

NASA Invests in Next Stage of Visionary Technology Development

NASA makes dozens of patents available in public domain

Pentagon's research agency showcases future tech

SOLAR SCIENCE
Long March-7 rocket delivered to launch site

China's space technology extraordinary, impressive says Euro Space Center director

China can meet Chile's satellite needs: ambassador

China launches Kunpeng-1B sounding rocket

SOLAR SCIENCE
ISS completes 100,000th orbit of Earth: mission control

Canadian astronaut to join ISS in 2018

NASA, Space Station partners announce future mission crew members

New landing date for ESA astronaut Tim Peake

SOLAR SCIENCE
Pre-launch processing is underway with Indonesia's BRIsat for the next Arianespace heavy-lift flight

New Antares Rocket Rolls Out at NASA Wallops

First work platforms powered tested in VAB for Space Launch System

SpaceX's Dragon cargo ship splashes down in Pacific

SOLAR SCIENCE
Star Has Four Mini-Neptunes Orbiting in Lock Step

Exoplanets' Orbits Point to Planetary Migration

Synchronized planets reveal clues to planet formation

Kepler space telescope finds another 1284 exo planets

SOLAR SCIENCE
Scientists take a major leap toward a 'perfect' quantum metamaterial

UW team first to measure microscale granular crystal dynamics

Self-healing, flexible electronic material restores functions after many breaks

Digital "clone" testing aims to maximize machine efficiency









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.