. 24/7 Space News .
AEROSPACE
NASA Tests New Alloy to Fold Wings in Flight
by Matt Kamlet for AFRC News
Edwards AFB CA (SPX) Jan 23, 2018


The subscale testbed PTERA comes into land at NASA Armstrong Flight Research Center in California

NASA has successfully applied a new technology in flight that allows aircraft to fold their wings to different angles while in the air.

The recent flight series, which took place at NASA's Armstrong Flight Research Center in California, was part of the Spanwise Adaptive Wing project, or SAW. This project aims to validate the use of a cutting-edge, lightweight material to be able to fold the outer portions of aircraft wings and their control surfaces to optimal angles in flight.

SAW, which is a joint effort between Armstrong, NASA's Glenn Research Center in Cleveland, or GRC, Langley Research Center in Virginia, Boeing Research and Technology in St. Louis and Seattle, and Area-I Inc. in Kennesaw, Georgia, may produce multiple in-flight benefits to aircraft in the future, both subsonic and supersonic.

Folding wings in flight is an innovation that had been studied using aircraft in the past, including the North American XB-70 Valkyrie in the 1960s. However, the ability to fold wings in flight has always been dependent on heavy and bulky conventional motors and hydraulic systems, which can be cumbersome to the aircraft.

The SAW project intends to obtain a wide spectrum of aerodynamic benefits in flight by folding wings through the use of an innovative, lightweight material called shape memory alloy. This material is built into to an actuator on the aircraft, which plays a vital role for moving parts on the airplane, where it has the ability to fold the outer portion of an aircraft's wings in flight without the strain of a heavy hydraulic system. Systems with this new technology may weigh up to 80 percent less than traditional systems.

The recent series of flight tests at Armstrong successfully demonstrated the material's application and use, by folding the wings between zero and 70 degrees up and down in flight.

"We wanted to see: can we move wings in flight, can we control them to any position we want to get aerodynamic benefits out of them, and could we do it with this new technology," said SAW Co-Principal Investigator Othmane Benafan.

"Folding wings has been done in the past, but we wanted to prove the feasibility of doing this using shape memory alloy technology, which is compact, lightweight, and can be positioned in convenient places on the aircraft."

On subsonic aircraft, such as commercial airliners, the potential aerodynamic benefit of folding the wings includes increased controllability, which may result in a reduced dependency on heavier parts of the aircraft, including the tail rudder. This may result in a more fuel-efficient aircraft, as well as the ability for future long-winged aircraft to taxi in airports. Additionally, pilots may take advantage of a number of different flight conditions, such as wind gusts, by folding their wings to adapt to any particular condition experienced in flight.

One of the most significant potential benefits of folding wings in flight, however, is with supersonic flight, or flying faster than the speed of sound. "There's a lot of benefit in folding the wing tips downward to sort of 'ride the wave' in supersonic flight, including reduced drag. This may result in more efficient supersonic flight," SAW Principal Investigator Matt Moholt said.

"Through this effort, we may be able to enable this element to the next generation of supersonic flight, to not only reduce drag but also increase performance, as you transition from subsonic to supersonic speeds. This is made possible using shape memory alloy."

The shape memory alloy is triggered by temperature, and works by using thermal memory in a tube to move and function as an actuator. Upon being heated, the alloy would activate a twisting motion in the tubes, which ultimately moves the wing's outer portion up or down.

NASA Glenn, which developed the initial alloy material, worked closely with Boeing to be able to use the alloy with an actuator in flight.

"The performance of this new alloy that we developed between NASA and Boeing really showed outstanding performance," said Jim Mabe, Technical Fellow with Boeing Research and Technology.

"From the time we started initial testing here at Boeing, up to the flight tests, the material behaved consistently stable, and showed a superior performance to previous materials."

To test the technology, NASA turned to Area-I to operate a remotely-controlled flight testbed called Prototype Technology-Evaluation Research Aircraft, or PTERA. PTERA was designed and built by Area-I, which was also involved in the design and integration of a shape memory alloy-actuated, wing-folding mechanism for the aircraft. The small-scale UAV features extensive flight instrumentation that is ideal for gathering data on SAW, as well as the ability to accommodate newly-designed wings for testing. Area-I personnel also conducted flight operations for the test, allowing NASA and Boeing to focus on the research during the flights.

"PTERA was developed as a flying laboratory, and was used in this flight series to host the SAW experiment," said Area-I Chief Executive Officer Dr. Nicholas Alley.

"The intentional, in-flight actuation of the outboard wing panels was a historic event, made all the more special as it took place over Rogers Dry Lake, where so much aviation history has been written."

Including a pair of system safety check flights, the SAW test flights were conducted over a two-day period. PTERA took off from the Rogers Dry Lake at Edwards Air Force Base with its wings at a level, zero-degree deflection. The testbed was flown in a large "racetrack" pattern, providing long legs of flight in which the necessary maneuvers for the research could be done. During these maneuvers, onboard controllers heated and cooled the SAW actuators, folding the wing panels to different angles between zero and 70 degrees.

For the first two flights, the wing tips were rigged to fold downward, while later flights featured rearranging the hardware to achieve 70-degree upward deflection. Wing-folding maneuvers were achieved in flight within three minutes each.

Follow-on SAW flights are planned for as early as summer 2018 that will expand the functionality of the SAW system, to be able to fold wings 70 degrees both up and down in a single flight. Tests are also expected to take place at Glenn, where engineers are working to scale up the technology flown on PTERA to be used on the wing of an F-18.

"We put the SAW technology through a real flight environment, and these flights not only proved that we can fly with this technology, but they validated how we went about integrating it," commented Moholt.

"We will use the data from these flights to continue to improve upon the actuation system, including speed and smoothness of actually folding the wings, and we'll apply them as we get ready to fly again in 2018."

SAW is an effort within NASA's Convergent Aeronautic Solutions project under the agency's Aeronautics Research Mission Directorate.

AEROSPACE
Bell-Boeing receives $35 million contract to upgrade V-22 Ospreys
Washington (UPI) Jan 19, 2018
Hardware and software upgrades for the V-22 Osprey aircraft are included in a $34.9 million contract awarded to Bell-Boeing JPO, the Defense Department has announced. The contract, announced Thursday by the Department of Defense, sets the company up to provide upgrades for 28 flight training devices to integrate necessary software into Marine Corps and Air Force V-22s. First intr ... read more

Related Links
Aeronautics
Aerospace News at SpaceMart.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

AEROSPACE
Elementary, my dear machine intelligence

S. Korea's Chinese tourist slump endures despite pledges

Europe brings on charm and blue skies to lure Chinese tourists

Chinese, Russians shore up Middle East tourism

AEROSPACE
Aerojet Rocketdyne RS-25 test advances exploration efforts

Arianespace to launch SES-14 and Al Yah 3 for SES and Yahsat

Aerojet Rocketdyne Supports ULA Launch in Support of National Security

Update from Mojave: VSS Unity successfully completes high speed glide flight

AEROSPACE
Deep, buried glaciers spotted on Mars

Opportunity takes right at the fork and has successful battery test

Steep Slopes on Mars Reveal Structure of Buried Ice

Scientist's work may provide answer to Martian mountain mystery

AEROSPACE
Scientist reveals what is so special about Chines's next moon mission

China's Kuaizhou-11 rocket scheduled to launch in first half of 2018

Nation 'leads world' in remote sensing technology

China plans for nuclear-powered interplanetary capacity by 2040

AEROSPACE
Europe's space agency braces for Brexit fallout

Xenesis and ATLAS partner to develop global optical network

GomSpace signs deal for low-inclination launch on Virgin's LauncherOne

SES-15 Enters Commercial Service to Serve the Americas

AEROSPACE
Self-healing fungi concrete could provide sustainable solution to crumbling infrastructure

Ultra-thin memory storage device paves way for more powerful computing

Physicists succeed in measuring mechanical properties of 2-D monolayer materials

Russian scientists found excitons in nickel oxide for the first time

AEROSPACE
NASA study shows disk patterns can self-generate

Hubble finds substellar objects in the Orion Nebula

Ingredients for life revealed in meteorites that fell to Earth

Citizen scientists discover five-planet system

AEROSPACE
JUICE ground control gets green light to start development

New Year 2019 offers new horizons at MU69 flyby

Study explains why Jupiter's jet stream reverses course on a predictable schedule

New Horizons Corrects Its Course in the Kuiper Belt









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.