. 24/7 Space News .
EXO WORLDS
NASA Team Teaches Algorithms to Identify Life
by Lori Keesey for GSFC News
Greenbelt MD (SPX) May 20, 2019

An interdisciplinary team of Goddard researchers, including Ryan Kent, Heather Graham, and Burcu Kosar who are pictured here, are harnessing the power of machine learning to identify textural patterns unique to life. The pilot project is funded by Goddard's Internal Research and Development program.

If you've seen dental plaque or pond scum, you've met a biofilm. Among the oldest forms of life on Earth, these ubiquitous, slimy buildups of bacteria grow on nearly everything exposed to moisture and leave behind common tell-tale textures and structures identifying them as living or once-living organisms.

Without training and sophisticated microscopes, however, these biofilms can be difficult to identify and easily confused with textures produced by non-biological and geological processes.

A team of NASA engineers and scientists at the Goddard Space Flight Center in Greenbelt, Maryland, has launched a pilot project teaching algorithms to autonomously recognize and classify biofabrics, textures in rocks created by living organisms.

The idea would be to equip a rover with these sophisticated imaging and data-analysis technologies and allow the instruments to decide in real-time which rocks to sample in the search for life, regardless of how primitive, on the Moon or Mars.

The multidisciplinary project, led by Goddard materials engineer Ryan Kent, is harnessing the power of machine learning - considered a subset of artificial intelligence - where computer processors are equipped with algorithms that, like humans, learn from data, but faster, more accurately, and with less intrinsic bias.

Used ubiquitously by all types of industries, including credit card companies searching for potentially fraudulent transactions, machine learning gives processors the ability to search for patterns and find relationships in data with little or no prompting from humans.

In recent months, Goddard researchers have begun investigating ways NASA could benefit from machine-learning techniques. Their projects run the gamut, everything from how machine learning could help in making real-time crop forecasts or locating wildfires and floods to identifying instrument anomalies.

Other NASA researchers are tapping into these techniques to help identify hazardous Martian and lunar terrain, but no one is applying artificial intelligence to identify biofabrics in the field, said Heather Graham, a University of Maryland researcher who works at Goddard's Astrobiology Analytical Laboratory and is the brainchild behind the project.

The possibility that these organisms might live or had once lived beneath or on the surface of Mars is possible. NASA missions discovered gullies and lake beds, indicating that water once existed on this dry, hostile world.

The presence of water is a prerequisite for life, at least on Earth. If life took form, their fossilized textures could be present on the surfaces of rocks. It's even possible that life could have survived on Mars below the surface, judging from some microbes on Earth that thrive miles underground.

"It can take a couple hours to receive images taken by a Mars rover, even longer for more distant objects," Graham said, adding that researchers examine these images to determine whether to sample it. "Our idea of equipping a rover with sophisticated imaging and machine-learning technologies would give it some autonomy that would speed up our sampling cadence. This approach could be very, very useful."

Teaching the Algorithms
Teaching algorithms to identify biofabrics begins first with a laser confocal microscope, a powerful tool that provides high-resolution, high-contrast images of three-dimensional objects.

Recently acquired by Goddard's Materials Branch, the microscope is typically used to analyze materials used in spaceflight applications. While rock scanning wasn't the reason Goddard bought the tool, it fits the bill for this project due to its ability to acquire small-scale structure.

Kent scans rocks known to contain biofabrics and other textures left by life as well as those that don't. Machine-learning expert Burcu Kosar and her colleague, Tim McClanahan, plan to take those high-resolution images and feed them into commercially available machine-leaning algorithms or models already used for feature recognition.

"This is a huge, huge task. It's data hungry," Kosar said, adding that the more images she and McClanahan feed into the algorithms, the greater the chance of developing a highly accurate classifying system that a rover could use to identify potential lifeforms. "The goal is to create a functional classifier, combined with a good imager on a rover."

The project is now being supported by Goddard's Internal Research and Development program and is a follow-on to an effort Kent initially started in 2018 under another Goddard research program.

"What we did was take a few preliminary studies to determine if we could see different textures on rocks. We could see them," Kent said. "This is an extension of that effort. With the IRAD, we're taking tons of images and feeding them into the machine-learning algorithms to see if they can identify a difference. This technology holds a lot of promise."

More Goddard technology news here


Related Links
Machine-Learning at NASA
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


EXO WORLDS
Planetary Habitability? It's What's Inside That Counts
Washington DC (SPX) May 03, 2019
Which of Earth's features were essential for the origin and sustenance of life? And how do scientists identify those features on other worlds? A team of investigators with array of expertise ranging from geochemistry to planetary science to astronomy published this week an essay in Science [https://science.sciencemag.org] urging the research community to recognize the vital importance of a planet's interior dynamics in creating an environment that's hospitable for life. With our existing cap ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EXO WORLDS
Oscar Avalos Dreams in Titanium

House committee limits Space Development Agency funding, asks for detailed plans

Trump, NASA want another $1.6 billion to return America to the moon

NASA Awards $106 Million to US Small Businesses for Technology Development

EXO WORLDS
Rocket Lab to launch rideshare mission for Spaceflight

SpaceX's Dragon Cargo capsule docks with Space Station

SpinLaunch Breaks Ground for New Test Facility at Spaceport America

Ariane 6 series production begins with first batch of 14 launchers

EXO WORLDS
NASA's MRO Completes 60,000 Trips Around Mars

How the Sun pumps out water from Mars into space

New water cycle on Mars discovered

For InSight, dust cleanings will yield new science

EXO WORLDS
China develops new-generation rockets for upcoming missions

China's Yuanwang-7 departs for space monitoring missions

China's tracking ship Yuanwang-2 starts new mission after retirement

China to build moon station in 'about 10 years'

EXO WORLDS
Kleos Space appoints Ground Station Service Provider

Aerospace Workforce Training - A National Mandate for the Future

SpaceX nears first launch of its Starlink satellites

Maxar Technologies to receive full insurance payout for WorldView-4 loss

EXO WORLDS
Louisiana-based Geocent's Advanced Aerospace Materials to Fly Aboard International Space Station

Elkem's Silgrain Powering Space Exploration and Research

Mission-Saving NASA Instrument Secures New Flight Opportunity; Slated for Significant Upgrade

BAE Systems Radiation-hardened Electronics in Orbit a Total of 10,000 Years

EXO WORLDS
Small, hardy planets can survive stellar end sequence

Gravitational forces in protoplanetary disks may push super-Earths close to their stars

Rare-Earth metals in the atmosphere of a glowing-hot exoplanet

Cosmic dust reveals new insights on the formation of solar system

EXO WORLDS
NASA's New Horizons Team Publishes First Kuiper Belt Flyby Science Results

Brazilian scientists investigate dwarf planet's ring

Next-Generation NASA Instrument Advanced to Study the Atmospheres of Uranus and Neptune

Public Invited to Help Name Solar System's Largest Unnamed World









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.