. 24/7 Space News .
SHAKE AND BLOW
NASA Study Improves Understanding of LA Quake Risks
by Staff Writers
Pasadena CA (JPL) Oct 22, 2015


Setting of the La Habra quake. Red dots show the magnitude 5.1 main shock, magnitude 4.1 aftershock and magnitude 5.4 Chino quake in 2008. Relocated aftershocks are green dots. Modeled faults are in brown, with the heavier reddish brown line denoting the bottom of the fault and labeled with italics. Image courtesy NASA/JPL-Caltech. For a larger version of this image please go here.

A new NASA-led analysis of a moderate magnitude 5.1 earthquake that shook Greater Los Angeles in 2014 finds that the earthquake deformed Earth's crust across a broad region encompassing the northern Los Angeles Basin and northern Orange County. The shallow ground movements observed from this earthquake likely reflect strain accumulated on deeper faults, which remain locked and may be capable of producing future earthquakes.

A team of NASA and university researchers led by geophysicist Andrea Donnellan of NASA's Jet Propulsion Laboratory, Pasadena, California, used GPS and NASA airborne radar data to measure surface deformation in Earth's crust caused by the March 28, 2014, earthquake, which was centered in La Habra, California.

The earthquake was felt widely in Orange, Los Angeles, Ventura, Riverside, San Bernardino, Kern and San Diego counties. While the earthquake was relatively moderate in size, the earthquake's depth (3.6 miles, or 5.85 kilometers) and location within a highly populated region resulted in more than $12 million in damage. Most of the damage occurred within a 3.7-mile (6-kilometer) radius of the epicenter, with a substantial amount of damage south of the main rupture.

Donnellan's team found the earthquake deformed Earth's crust across a broad region, but mostly south of the main rupture, consistent with the observed damage. They measured 3.1 inches (80 millimeters) of northward horizontal motion and about 0.2 to 0.4 inches (5 to 10 millimeters) of upward motion.

They also discovered that the total amount of surface deformation associated with the La Habra earthquake was larger than what would be expected from the magnitude 5.1 main shock. Eighty-two percent of the surface motion was attributed to the earthquake itself, with the remaining 18 percent occurring aseismically, without producing any ground shaking. The amount of aseismic motion was greater than expected. The team's results show that even moderate earthquakes near Los Angeles can produce ground deformation and damage to water mains away from their epicenters.

The team used computer models to explain the observed patterns of ground deformation and found that the best explanation for the observed ground deformation was shallow movement along several active buried fault-like zones in the West Coyote Hills in northern Orange County; in the Chino Hills on the border of Orange, Los Angeles and San Bernardino Counties; and in the San Gabriel Valley.

The modeled movements identified by the team in the San Gabriel Valley and Chino Hills are part of a series of incompletely mapped active faults in a geologically complex region. It is likely the deeper portions of these faults remain locked and thus are capable of producing future earthquakes.

"The earthquake faults in this region are part of a system of faults," said Donnellan. "They can move together in an earthquake and produce measurable surface deformation, even during moderate magnitude earthquakes. This fault system accommodates the ongoing shortening of Earth's crust in the northern Los Angeles region."

Tectonic motion across the Los Angeles region is distributed on an intricate network of horizontally and vertically moving faults that eventually release accumulated strain in the form of earthquakes, such as the destructive 1994 magnitude-6.7 Northridge earthquake.

Donnellan said a future earthquake to release the accumulated strain on these faults could occur on any one or several of these fault structures, which may not have been mapped at the surface. "Identifying specific fault structures most likely to be responsible for future earthquakes for this system of many active faults is often very difficult," she said.

The earthquake ground displacements were measured by combining pre- and post-earthquake continuous GPS data from the National Science Foundation's Plate Boundary Observatory with NASA's airborne radar data from the JPL-developed Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR).

UAVSAR is an L-band Interferometric SAR instrument mounted beneath a C-20A Earth science research aircraft from NASA's Armstrong Flight Research Center, Edwards, California. It detects minute (less than centimeter-level) changes in Earth's surface that occur over time between flights. NASA has been using UAVSAR to monitor deformation across the Los Angeles region about every six months since 2009.

Co-author Lisa Grant Ludwig of the University of California, Irvine, said the team's analysis can be used by policymakers and government agencies to improve assessments of earthquake risk in the Los Angeles area that are critical for disaster planning.

"The study builds upon more than two decades of NASA-led research to develop new methods to better measure and monitor movements of the solid Earth using satellite and airborne data and advanced computer modeling," Donnellan said. "It also provides a means of using these technologies to identify which faults moved during earthquakes, to measure exactly how much Earth's surface deformed during earthquakes, and to use these measurements to estimate future earthquake potential."

Study results are published in the journal Earth and Space Science. Other participating institutions include Indiana University, Bloomington; University of California, Davis; and University of Nevada, Reno.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
UAVSAR at JPL
Bringing Order To A World Of Disasters
When the Earth Quakes
A world of storm and tempest






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
SHAKE AND BLOW
Among China's most coveted govt jobs: earthquake monitor
Beijing (AFP) Oct 21, 2015
Fancy a Chinese government job? How about the Inner Mongolia Seismological Bureau? If so, take your place behind more than 1,000 other applicants. The position - only one is available - is the second most popular in China's annual civil service recruitment exercise, state media reported Wednesday. Every year more than one million people take the entrance examination in an attempt to se ... read more


SHAKE AND BLOW
Europe-Russia Lunar mission will make them friends again

Mound near lunar south pole formed by unique volcanic process

Lunar Pox

Space startup confirms plans for robotic moon landings

SHAKE AND BLOW
Landing site recommended for ExoMars 2018

You too can learn to farm on Mars

The Martian Astrobiologist

Opportunity parked for solar panels to charge up for winter

SHAKE AND BLOW
Hold on to your hoverboard: 'Back to the Future' is now

Journaling: Astronauts chronicle missions

Brands eye big bucks with 'Back to the Future' nostalgia

Russian Cosmonauts Taste 160 Meals Ahead of Space Station Expedition

SHAKE AND BLOW
China aims to go deeper into space

Latest Mars film bespeaks potential of China-U.S. space cooperation

Exhibition on "father of Chinese rocketry" opens in U.S.

The First Meeting of the U.S.-China Space Dialogue

SHAKE AND BLOW
RSC Energia patented inflatable space module for ISS

Clearing the Space Fog on ISS

International Space Agencies Meet to Advance Space Exploration

Meet the International Docking Adapter

SHAKE AND BLOW
ORBCOMM Announces Launch Window For Second OG2 Mission

10th Anniversary of the Final Titan

China puts new communication satellite into orbit for HK company

ISRO to Launch 6 Singapore Satellites in December

SHAKE AND BLOW
Cosmic 'Death Star' is destroying a planet

Most earth-like worlds have yet to be born, according to theoretical study

Airbus DS ready to start testing exoplanet tracker CHEOPS

Hubble Telescope Spots Mysterious Space Objects

SHAKE AND BLOW
U.S. Air Force long-range radar systems reach full operational capability

A 'hot' new development for ultracold magnetic sensors

Mother-of-pearl's genesis identified in mineral's transformation

Exciting breakthrough in 2-D lasers









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.