Subscribe free to our newsletters via your
. 24/7 Space News .


Subscribe free to our newsletters via your




















NASA Sees Hidden Structure Of Neutron Star In Starquake

File photo: The neutron star RX J07204-3125.
by Staff Writers
Washington DC (SPX) Apr 26, 2006
Scientists using NASA's Rossi X-ray Timing Explorer have estimated the depth of the crust on a neutron star, the densest object known in the universe. The crust, they say, is close to a mile deep and so tightly packed that a teaspoon of this material would weigh about 10 million tons on Earth.

The measurement, the first of its kind, came courtesy of a massive explosion on a neutron star in December 2004. Vibrations from the explosion revealed details about the star's composition. The technique is analogous to seismology, the study of seismic waves from earthquakes and explosions that reveal the structure of the Earth's crust and interior.

This new seismology technique provides a way to probe a neutron star's interior, a place of great mystery and speculation. Pressure and density are so intense here that the core might harbor exotic particles thought to have existed only at the moment of the Big Bang.

Tod Strohmayer of NASA Goddard Space Flight Center in Greenbelt, Md., presents this result in a press conference this week at the April meeting of the American Physical Society in Dallas. His colleague, Anna Watts, formerly at Goddard, is now at the Max Planck Institute for Astrophysics in Germany.

"We think this explosion, the biggest of its kind ever observed, really jolted the star and literally started it ringing like a bell," said Strohmayer. "The vibrations created in the explosion, although faint, provide very specific clues about what makes up these bizarre objects. A neutron star's ring depends on how waves pass through layers of differing density, either slushy or solid."

A neutron star is the core remnant of a star once several times more massive than the sun. A neutron star contains about 1.4 solar masses of material crammed into a sphere only about 12 miles across. Strohmayer and Watts examined a neutron star named SGR 1806-20, about 40,000 light years from Earth in the constellation Sagittarius. The object is in a subclass of highly magnetic neutron stars called magnetars.

On December 27, 2004, the surface of SGR 1806-20 experienced an unprecedented explosion. As reported by NASA and the National Science Foundation in early 2005, this was the brightest X-ray flash ever seen from beyond our solar system. The explosion, called a hyperflare, was caused by a sudden change in the star's powerful magnetic field that cracked the crust, likely producing a massive starquake. The event was detected by several space observatories, including the Rossi Explorer, which observed the X-ray light emitted.

Strohmayer and Watts think that the oscillations are evidence of global torsional vibrations within the star's crust. These vibrations, like waves moving through a rope, are analogous to the S-waves observed during terrestrial earthquakes. Their study, building on observations of vibrations from this source by GianLuca Israel of Italy's National Institute of Astrophysics, found several new frequencies during the hyperflare.

Watts and Strohmayer subsequently confirmed their measurements using NASA's Ramaty High Energy Spectroscopic Solar Imager, a solar observatory that also recorded the hyperflare. And they found the evidence for a high-frequency oscillation at 625 Hz, indicative of waves traversing the crust vertically.

The abundance of frequencies---similar to a chord, as opposed to a single note---enabled the scientists to estimate the depth of the neutron star crust. This is based on a comparison of frequencies from waves traveling around the star's crust and from those traveling radially through it. The diameter of a neutron star is uncertain, but based on the estimate of about 12 miles across, the crust would be about 1 mile deep. This figure, based on the observed frequencies, is in line with theoretical estimates.

Starquake seismology holds great promise for determining many neutron star properties. Strohmayer and Watts have analyzed archived Rossi data from a dimmer 1998 magnetar hyperflare (from SGR 1900+14) and found telltale oscillations here, too, although not strong enough to determine the crust thickness.

A larger neutron star explosion detected in X-rays might reveal deeper secrets, such as the nature of matter at the star's core. One exciting possibility is that the core might contain free quarks. Quarks are the building blocks of protons and neutrons, and under normal conditions are always tightly bound together. Finding evidence for free quarks would aid in understanding the true nature of matter and energy. Laboratories on Earth, including massive particle accelerators, cannot generate the energies needed to reveal free quarks.

"Neutron stars are great laboratories for the study of extreme physics," said Watts. "We'd love to be able to crack one open, but since that's probably not going to happen, observing the effects of a magnetar hyperflare on a neutron star is perhaps the next best thing."

Related Links
NASA Rossi X-ray Timing Explorer



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Evidence Mounts For Companion Star To Our Sun
Newport Beach CA (SPX) Apr 25, 2006
The Binary Research Institute (BRI) has found that orbital characteristics of the recently discovered planetoid, "Sedna", demonstrate the possibility that our sun might be part of a binary star system. A binary star system consists of two stars gravitationally bound orbiting a common center of mass.







  • ATK Gets NASA OK For More CLV Work
  • Muslim Countries Urged To Reach For The Stars
  • NASA To Test Prototypes For Future Space Trips
  • Boeing Opens Launch Systems Office In Huntsville

  • Mars Express Views Nanedi Valles
  • Spirit Studies New Terrain At Its Winter Haven
  • Life-Marker Chip Planned For ESA Mars Lander
  • Opportunity Heads Toward Victoria

  • NASA Still Looking To Launch Discovery In July
  • Arianespace Continues Sat Launch Prep
  • NASA Delays Cloud Satellite Launch Again
  • Russian State Commission Issues Results Of Proton Review

  • SAIC Acquires Geo-Spatial Technologies
  • GeoEye To Keep An Eye On Farming Crop Subsidies For Europe
  • Unmanned Aerial Vehicles Gauge Indian Ocean Pollutants
  • Unmanned Aerial Vehicles Gauge Indian Ocean Pollutants

  • Xena Poses A Bright Mystery
  • Tenth Planet Only Slightly Bigger Than Pluto
  • New Horizons Payload Gets High Marks on Early Tests
  • "Zero G and I Feel Fine"

  • NASA Sees Hidden Structure Of Neutron Star In Starquake
  • Evidence Mounts For Companion Star To Our Sun
  • Observations Reveal Origin Of Dust Around Nearby Star
  • More Research Links Dark Matter To Galaxy Formation

  • China Completes Radio Telescope For Moon-Probe Project
  • Pete Worden Is New NASA Ames Director
  • Lunar Rocks Suggest Meteorite Shower
  • NASA Seeking Lunar Exploration Ideas

  • Spirent To Supply Testing Equipment For Galileo
  • New Student-Designed System Tracks Firefighter And Special Forces
  • Russia And India Discuss Military Element For GLONASS
  • Germany's Gateway To The World

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement