Subscribe free to our newsletters via your
. 24/7 Space News .




Subscribe free to our newsletters via your




















ROBO SPACE
NASA Robotic Refueling Mission Departs Station
by Peter Sooy and Vanessa Lloyd for GSFC News
Greenbelt MD (SPX) Apr 04, 2017


Astronaut Mike Fossum's spacewalk for the Robotics Refueling Mission Payload on July 12, 2011. Image courtesy NASA. Watch a video on the technology here.

The International Space Station serves as an orbiting test and demonstration laboratory for scientific experiments to be performed inside and outside the space station. The experiments are inherently transient with typical life cycles of about one to five years. Once their test objectives are accomplished, they are removed to make way for new experiments.

On Feb. 19, a NASA experiment - a test module called Raven - was successfully launched on SpaceX-10/Dragon and installed on the exterior of the station, where it will test autopilot technologies for spacecraft. As the Raven payload took its perch on the station, another Satellite Servicing Projects Division (SSPD) creation - the Robotic Refueling Mission (RRM) payload, departed.

Aboard the Dragon trunk in which Raven arrived, RRM made its way back to Earth on March 19, where it reentered the atmosphere. Though both payloads were and are critical to the advancement of satellite servicing, after RRM served its purpose and accomplished its objectives, it was time for RRM to leave the station and make way for new experiments.

RRM has established a firm legacy in demonstrating satellite servicing capabilities and that on-orbit servicing is technologically ready for implementation. RRM launched in July 2011 aboard the final space shuttle flight and was the last payload to be removed from the shuttle cargo bay by an astronaut.

It was subsequently mounted outside onto a Express Logistics Carrier built at NASA's Goddard Space Flight Center in Greenbelt, Maryland. RRM demonstrated and tested the tools, technologies and techniques needed to robotically refuel and repair satellites in space that were not designed to be serviced.

The Robotic Refueling Mission was an essential bridge between the manned servicing carried out in the Hubble Servicing Missions and robotic servicing that will be demonstrated in the upcoming Restore-L mission," said Ben Reed, deputy division director for SSPD. "Our team worked very hard to develop the suite of RRM tools and experiments and are extremely pleased to see what they accomplished. We are eager to apply the lessons learned from RRM to the Restore-L mission as well as future servicing efforts."

The year was 2010 when planning for RRM began. The fourth Hubble Space Telescope servicing mission had just ended. The space shuttle was in the twilight of its career, scheduled for retirement in 2011. The hundreds of engineers at Goddard who had supported servicing Hubble were not sure what a future without shuttle would hold.

A team, led by the "father of servicing" Frank Cepollina, began brainstorming how to continue servicing without shuttle. With no time to waste, Cepollina's team determined that the future of servicing would rely on robotics and the space station robotic arm was the best mechanism to test and develop robotic servicing techniques. Eighteen months later - extremely quick for a project of this complexity - RRM was in the cargo bay of space shuttle Atlantis, ready to launch and demonstrate to the world that robotic servicing had come of age.

"The space station is on-orbit and already has a robot," said Frank Cepollina, the previous associate director of the SSPD. "Space station was tailor-made for RRM and worked beautifully as a testbed for servicing."

The washing machine-sized RRM payload housed four unique tools that were used by the station's twin-armed Canadian "Dextre" robot to accomplish the precise, complex tasks needed to refuel a satellite. These tasks included cutting and peeling back thermal blankets, unscrewing multiple caps, accessing valves and transferring a simulated satellite fuel. In January 2013, with this fluid transfer in space, RRM confirmed that current-day robotic technology could refuel a triple-sealed satellite fuel valve, transferring 1.7 liters of ethanol.

In separate launches in 2013 and 2014, two new task boards and a tool were sent to the space station as part of RRM "Phase 2." The task boards further demonstrated activities vital to servicing free-flying satellites. Similarly, the new tool, the Visual Inspection Poseable Invertebrate Robot, or VIPIR, exhibited state-of-the-art near and midrange inspection using an articulable, "snake-like" borescope tool.

Through these two phases and multiple days of operations, the RRM team has bonded and consistently performed under pressure. Together they created a payload and completed a mission critical to the future of satellite servicing.

Currently, they are developing and working to execute a third phase of RRM, which will continue to advance the technology necessary for robotic refueling. RRM 3 will focus specifically on servicing cryogenic fluid and xenon gas interfaces which will support future scientific missions as humans extend their exploration further into our solar system.

"Space station was a wonderful facility to test our technologies, and we know that RRM's departure will make room for another great experiment," said Jill McGuire, RRM project manager.

"We are proud of what we accomplished with RRM, and are excited to contribute to the next stages of enabling robotic satellite servicing."

ROBO SPACE
Electronic synapses that can learn: towards an artificial brain?
Paris (SPX) Apr 04, 2017
Researchers from the CNRS, Thales, and the Universities of Bordeaux, Paris-Sud, and Evry have created an artificial synapse capable of learning autonomously. They were also able to model the device, which is essential for developing more complex circuits. The research was published in Nature Communications on 3 April 2017. One of the goals of biomimetics is to take inspiration from the fun ... read more

Related Links
Robotic Refueling Mission
All about the robots on Earth and beyond!

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ROBO SPACE
US astronaut John Glenn is buried with military honors

Russia, Europe, US Should Work Together on Space Exploration - German Agency

United Launch Alliance Completes Crew Emergency Egress System

Robot Fedor to Guide Russia's Federation Spacecraft in Maiden Flight - Roscosmos

ROBO SPACE
US-Russia Venture Hopes to Sell More RD-180 Rocket Engines to US

Bezos sells $1 bn in Amazon stock yearly to pay for rocket firm

Kremlin Believes Russia Can Compete With Private Firms Like SpaceX in Space

US Hardware Production Begins for Money-Saving Next-Generation Rockets

ROBO SPACE
Russia critcal to ExoMars Project says Italian Space Agency Head

New MAVEN findings reveal how Mars' atmosphere was lost to space

Potential Mars Airplane Resumes Flight

Prolific Mars Orbiter Completes 50,000 Orbits

ROBO SPACE
Yuanwang fleet to carry out 19 space tracking tasks in 2017

China Develops Spaceship Capable of Moon Landing

Long March-7 Y2 ready for launch of China's first cargo spacecraft

China Seeks Space Rockets Launched from Airplanes

ROBO SPACE
Ukraine Plans to Launch Telecom Satellite in Fourth Quarter of 2017

Russian Satellite Builder Reshetnev Fully Switches to Import Substitution

Russia Offering Brazil to Develop Gonets-Like Satellite System - Manufacturer

Intelsat-OneWeb Merger: Enhanced Connections for Government Users

ROBO SPACE
Norway joins US Strategic Command space data sharing program

Citizen scientist photographs space station space debris from Earth

European conference on space debris risks and mitigation

SES and Thales Unveil Next-Generation Capabilities Onboard SES-17

ROBO SPACE
Inside Arctic ice lies a frozen rainforest of microorganisms

Exoplanet mission gets ticket to ride

TRAPPIST-1 flares threaten possibility of habitability on surrounding exoplanets

Atmosphere around super-earth detected

ROBO SPACE
Neptune's movement from the inner to the outer solar system was smooth and calm

Hubble takes close-up portrait of Jupiter

Four unknown objects being investigated in Planet X

New Horizons Halfway from Pluto to Next Flyby Target




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News








The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement