. 24/7 Space News .
Mystery Of Nanoparticles Concealed In The Blink Of An Eye

file photo of quantum dots

Chicago IL (SPX) Jul 16, 2004
Scientists at the University of Chicago have discovered a better way to measure a confounding property of microscopic high-tech particles called quantum dots.

Quantum dots, also called nanocrystals, emit light in a rainbow of colors and are used in lasers, biological studies and other applications, but their tendency to blink hinders their technological value. Imagine the annoyance caused by a randomly flickering light bulb.

"A quantum dot might blink for just a millionth of a second or it might blink for 15 minutes," said Matthew Pelton, a Research Associate at the University of Chicago's James Franck Institute.

"This is one of the problems we have to solve if we want to engineer the properties of materials, particularly semiconductor materials, on the nanoscale."

Pelton has found a way to measure the blinking that is simpler and faster than the conventional method. He will describe the measurements in the Aug. 2 issue of Applied Physics Letters with co-authors David Grier, now of New York University, and Philippe Guyot-Sionnest of the University of Chicago.

Grier compares the light output or "noise" of a blinking group of quantum dots to the babble of a cocktail party conversation.

"Even if everyone's talking about the same thing you probably wouldn't be able to figure out what they're saying because they're all starting their conversations at random times and there are different variations on their conversations," he said.

"Matt has discovered that for these blinking quantum dots, all the conversations are the same in a very special way, and that allows you to figure out an awful lot about what's being said by listening to the whole crowd."

In previous studies, various research groups combined powerful microscopes with video cameras to record the blinking behavior of one quantum dot at a time, but that method is expensive, time-consuming and difficult to perform.

It also required that the dots be placed on a microscope slide. Pelton's method enables scientists to study the blinking patterns of large quantities of dots. And it can be done in just a few minutes with standard laboratory equipment under a variety of environmental conditions.

"Matt's approach is applicable to situations where previous measurements could not be made," Guyot-Sionnest said.

The four components of Pelton's system are a light source, a photodetector (a device that measures the intensity of light), an amplifier to boost the photodetector's output, and an analogue-to-digital converter that translates the amplified output into a string of numbers for digital processing.

The system has already revealed new insights into the behavior of quantum dots. Pelton's results contradict the conventional wisdom about the blinking dots, which states that environmental factors influence the behavior.

Pelton made his finding by applying a mathematical tool commonly used by electrical engineers to the problem of blinking quantum dots.

"The mathematical tool is almost 200 years old. No one had thought to apply it to this problem before," Grier said.

Studying quantum dots one at a time with microscopes and video cameras was limited by the capabilities of the camera. For example, a camera that takes 40 frames a second would miss any blinks that occur more rapidly.

But Pelton's system includes a tool called a power spectrum to trace blinking behavior. This tool has established numerical recipes for handling the time resolution problem.

The research team cannot say how long it might take to crack the mystery of the blinking quantum dots. What is certain is that quantum dots will continue to generate interest in high-tech circles.

"Many scientists are trying to start up companies to make nanocrystals and to find a new use for them," Guyot-Sionnest said.

Related Links
University of Chicago
American Chemical Society
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Is Small Different? Not Necessarily Say Georgia Tech Researchers
Atlanta GA (SPX) Jul 13, 2004
Researchers at the Georgia Institute of Technology and NASA suggest that materials on the nanoscale may sometimes be subject to the same physical rules as their macro-world counterparts.







  • A Bizarre Way To Find Space Junk
  • State Lawmakers Voice Support For New Space Exploration Vision
  • It's Business As Usual At KSC
  • It's Action Stations For Lonely Interstellar Voyager

  • Opportunity Reading Rocks Within Its Reach
  • Spirit Reaches 180 Sols
  • NASA Adapting Earth Sensor To Read Data From Mole In Mars Soil
  • Terraforming Mars, The Noble Experiment?

  • Autonomous Rendezvous Spacecraft Arrives At Vandenberg
  • ILS Proton To Launch Another Satellite For DIRECTV
  • Winning Sound With Ariane Technology
  • Sea Launch Delivers Telstar 18 To Orbit

  • Impact Of Rising Atmospheric CO2 Levels Found In World Oceans
  • Improving Incident Planning And Emergency Response Management
  • Aura Around Earth
  • Asia Air Survey Chooses Intergraph For Full-Digital Image Production

  • SWAP To Determine Where The Sun And Ice Worlds Meet
  • Hubble Fails To Spot Suspected Sedna Moon
  • Life Beneath The Ice In The Outer Solar System?
  • Gravity Rules: The Nature of Planethood

  • Blue Moon
  • SMART-1 Observes The Earth
  • NASA Researchers Consider Mobile Lunar Base Concepts
  • SMART-1 Finds Small Thrust Level Oscillations Help

  • Apollo's Lunar Leftovers
  • New Moon Shot Not So Costly
  • Armstrong Reflects On A New Visions For Space Exploration
  • Sunny lunar mountain good site for base

  • MicroTel Acquires Larus' Vista Labs For $5,800,000
  • MoviStar Puerto Rico And TCS Initiate E9-1-1 Phase II Deployment
  • CSI Wireless Establishes Supply Relationship With Dickey-John
  • Massachusetts Police Empowered By New Handheld Law Enforcement Solution

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement