Subscribe to our free daily newsletters
. 24/7 Space News .




Subscribe to our free daily newsletters



TECH SPACE
Move aside carbon: Boron nitride-reinforced materials are even stronger
by Staff Writers
Washington DC (SPX) Dec 24, 2015


Researchers tested the force required to pluck a boron nitride nanotube (BNNT) from a polymer by welding a cantilever to the nanotube and pulling. The experimental set-up is shown in a schematic on the left and an actual image on the right. Image courtesy Changhong Ke/State University of New York at Binghamton. For a larger version of this image please go here.

Carbon nanotubes are legendary in their strength - at least 30 times stronger than bullet-stopping Kevlar by some estimates. When mixed with lightweight polymers such as plastics and epoxy resins, the tiny tubes reinforce the material, like the rebar in a block of concrete, promising lightweight and strong materials for airplanes, spaceships, cars and even sports equipment.

While such carbon nanotube-polymer nanocomposites have attracted enormous interest from the materials research community, a group of scientists now has evidence that a different nanotube - made from boron nitride - could offer even more strength per unit of weight. They publish their results in the journal Applied Physics Letters, from AIP Publishing.

Boron nitride, like carbon, can form single-atom-thick sheets that are rolled into cylinders to create nanotubes. By themselves boron nitride nanotubes are almost as strong as carbon nanotubes, but their real advantage in a composite material comes from the way they stick strongly to the polymer.

"The weakest link in these nanocomposites is the interface between the polymer and the nanotubes," said Changhong Ke, an associate professor in the mechanical engineering department at the State University of New York at Binghamton. If you break a composite, the nanotubes left sticking out have clean surfaces, as opposed to having chunks of polymer still stuck to them. The clean break indicates that the connection between the tubes and the polymer fails, Ke noted.

Plucking Nanotubes
Ke and his colleagues devised a novel way to test the strength of the nanotube-polymer link. They sandwiched boron nitride nanotubes between two thin layers of polymer, with some of the nanotubes left sticking out. They selected only the tubes that were sticking straight out of the polymer, and then welded the nanotube to the tip of a tiny cantilever beam. The team applied a force on the beam and tugged increasingly harder on the nanotube until it was ripped free of the polymer.

The researchers found that the force required to pluck out a nanotube at first increased with the nanotube length, but then plateaued. The behavior is a sign that the connection between the nanotube and the polymer is failing through a crack that forms and then spreads, Ke said.

The researchers tested two forms of polymer: epoxy and poly(methyl methacrylate), or PMMA, which is the same material used for Plexiglas. They found that the epoxy-boron nitride nanotube interface was stronger than the PMMA-nanotube interface. They also found that both polymer-boron nitride nanotube binding strengths were higher than those reported for carbon nanotubes - 35 percent higher for the PMMA interface and approximately 20 percent higher for the epoxy interface.

The Advantages of Boron Nitride Nanotubes
Boron nitride nanotubes likely bind more strongly to polymers because of the way the electrons are arranged in the molecules, Ke explained. In carbon nanotubes, all carbon atoms have equal charges in their nucleus, so the atoms share electrons equally. In boron nitride, the nitrogen atom has more protons than the boron atom, so it hogs more of the electrons in the bond.

The unequal charge distribution leads to a stronger attraction between the boron nitride and the polymer molecules, as verified by molecular dynamics simulations performed by Ke's colleagues in Dr. Xianqiao Wang's group at the University of Georgia.

Boron nitride nanotubes also have additional advantages over carbon nanotubes, Ke said. They are more stable at high temperatures and they can better absorb neutron radiation, both advantageous properties in the extreme environment of outer space. In addition, boron nitride nanotubes are piezoelectric, which means they can generate an electric charge when stretched. This property means the material offers energy harvesting as well as sensing and actuation capabilities.

The main drawback to boron nitride nanotubes is the cost. Currently they sell for about $1,000 per gram, compared to the $10-20 per gram for carbon nanotubes, Ke said. He is optimistic that the price will come down, though, noting that carbon nanotubes were similarly expensive when they were first developed.

"I think boron nitride nanotubes are the future for making polymer composites for the aerospace industry," he said.

The article, "Mechanical strength of boron nitride nanotube-polymer interfaces," is authored by Xiaoming Chen, Liuyang Zhang, Cheol Park, Catharine C. Fay, Xianqiao Wang and Changhong Ke. It will be published in the journal Applied Physics Letters on December 22, 2015 (DOI: 10.1063/1.4936755).


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

.


Related Links
American Institute of Physics
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECH SPACE
Modeling microstructures in polycrystalline materials
Berlin, Germany (SPX) Dec 22, 2015
Most solid materials are of polycrystalline nature. In which way the individual grains are oriented in the material can be relevant for its functional properties. In order to determine the corresponding orientation distributions on large specimen areas, generally, a scanning electron microscope is employed. The specimen surface needs to be prepared, before it can be probed under vacuum by ... read more


TECH SPACE
Rare full moon on Christmas Day

LADEE Mission Shows Force of Meteoroid Strikes on Lunar Exosphere

XPRIZE verifies moon express launch contract, kicking off new space race

Gaia's sensors scan a lunar transit

TECH SPACE
University researchers test prototype spacesuits at Kennedy

Marshall: Advancing the technology for NASA's Journey to Mars

Opportunity positioned on steeper slopes for another Martian winter

Martian gullies likely contain 'no water': study

TECH SPACE
Researchers Recall Work on First Rendezvous in Space

NASA Accepting Applications for Future Explorers

China drives global patent applications to new high

Australia seeks 'ideas boom' with tax breaks, visa boosts

TECH SPACE
Agreement with Chinese Space Tech Lab Will Advance Exploration Goals

China launches new communication satellite

China's indigenous SatNav performing well after tests

China launches Yaogan-29 remote sensing satellite

TECH SPACE
Two whacks is all it takes for spacewalk repair

Unscheduled spacewalk likely on Monday

NASA spacewalk to fix ISS rail car

British astronaut docks with ISS as country cheers debut trip

TECH SPACE
45th Space Wing launches ORBCOMM; historically lands first stage booster

SpaceX rocket landing opens 'new door' to space travel

NASA orders second Boeing Crew Mission to ISS

ESA and Arianespace ink James Webb Space Telescope launch contract

TECH SPACE
Nearby star hosts closest alien planet in the 'habitable zone'

ALMA reveals planetary construction sites

Monster planet is 'dancing with the stars'

Exoplanets Water Mystery Solved

TECH SPACE
UCLA researchers create exceptionally strong and lightweight new metal

Move aside carbon: Boron nitride-reinforced materials are even stronger

Super strong, lightweight metal could build tomorrow's spacecraft

BAE Systems to provide radar support for U.S. Air Force




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement