. 24/7 Space News .
CARBON WORLDS
Mountain erosion may add CO2 to the atmosphere
by Staff Writers
Cape Cod MA (SPX) Apr 17, 2018

illustration only

Scientists have long known that steep mountain ranges can draw carbon dioxide (CO2) out of the atmosphere - as erosion exposes new rock, it also starts a chemical reaction between minerals on hill slopes and CO2 in the air, "weathering" the rock and using CO2 to produce carbonate minerals like calcite.

A new study led by researchers from the Woods Hole Oceanographic Institution (WHOI), however, has turned this idea on its head. In paper released on April 12th in the journal Science, the scientists announced that the erosion process can also be a source of new CO2 gas, and can release it back into the atmosphere far faster than it's being absorbed into newly-exposed rock.

"This goes against a long-standing hypothesis that more mountains mean more erosion and weathering, which means an added reduction of CO2. It turns out it's much more complicated than that," says Jordon Hemingway, a postdoctoral fellow at Harvard University and lead author on the paper.

The source of this extra CO2 isn't entirely geological. Instead, it's the byproduct of tiny microbes in mountain soils that "eat" ancient sources of organic carbon that are trapped in the rock. As the microbes metabolize these minerals, they spew out carbon dioxide.

The researchers came to this realization after studying one of the most erosion-prone mountain chains in the world - the central range of Taiwan. This steep-sided range is pummeled by more than three major typhoons each year, each of which mechanically erode the soil and rock through heavy rains and winds.

Hemingway and his colleagues examined samples of soil, bedrock, and river sediments from the central range, looking for telltale signs of organic carbon in the rock. What they found there surprised them.

"At the very bottom of the soil profile, you have basically unweathered rock. As soon as you hit the base of the soil, layer, though, you see rock that's loose but not yet fully broken down, and at this point the organic carbon present in the bedrock seems to disappear entirely," notes Hemingway. At that point in the soil, the team also noticed an increase in lipids that are known to come from bacteria, he adds.

"We don't yet know exactly which bacteria are doing this - that would require genomics, metagenomics, and other microbiological tools that we didn't use in this study. But that's the next step for this research," says WHOI marine geochemist Valier Galy, senior author and Hemingway's advisor in the MIT/WHOI Joint Program.

The group is quick to note that the total level of CO2 released by these microbes isn't severe enough to have any immediate impact on climate change - instead, these processes take place on geologic timescales. The WHOI team's research may lead to a better understanding of how mountain-based (or "lithospheric") carbon cycles actually work, which could help generate clues to how CO2 has been regulated since the Earth itself formed.

"Looking backwards, we're most interested in how these processes managed to keep the levels of CO2 in the atmosphere more or less stable over millions of years. It allowed Earth to have the climate and conditions it's had - one that has promoted the development of complex life forms," says Hemingway.

"Throughout our Earth's history, CO2 has wobbled over time, but has remained in that stable zone. This is just an update of the mechanism of geological processes that allows that to happen," he adds.


Related Links
Woods Hole Oceanographic Institution
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


CARBON WORLDS
Mechanism of oxidative unzipping of multiwall carbon nanotubes to graphene nanoribbons
Kazan, Russia (SPX) Apr 17, 2018
Graphene, a two-dimensional lattice of carbon atoms, has attracted enormous interest from a broad base of the research community for more than one decade. Graphene nanoribbons (GNRs), narrow strips of graphene, being quasi one-dimensional, possess complementary features relative to their two-dimensional counterpart of graphene sheets. Based on theoretical calculations, GNRs' electrical properties can be controlled by the width and edge configuration and they can vary from being metallic to semicon ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CARBON WORLDS
'Big ideas' conference steps up funding for 'audacious' projects

Growing Plants in Antarctica 'Open Way' for Distant Space Missions - Analyst

Giving Roots and Shoots Their Space: The Advanced Plant Habitat

Take it from me: I'm not signing up to become a space tourist just yet

CARBON WORLDS
NEXT-C Advanced Electric Propulsion Engine Cleared to Begin Production

Deep Space Industries to provide Comet satellite propulsion for BlackSky, LeoStella

Ariane 5 launches two satellites

Rocket Lab 'Its Business Time' launch window to open 20 April 2018 NZT

CARBON WORLDS
Trace Gas Orbiter reaches stable Mars orbit, ready to start science mission

ExoMars poised to start science mission

UAH gets NASA early-stage funding for "Marsbees" concept

MIPT physicists design a model of Martian winter

CARBON WORLDS
China's 'space dream': A Long March to the moon

China says Earth-bound space lab to offer 'splendid' show

Tiangong-1 expected to burn up on reentering atmosphere

Earth-bound Chinese spacelab plunging to fiery end

CARBON WORLDS
Storm hunter launched to International Space Station

SpaceX says Iridium satellite payload deployed

Spacecom selects SSL to build AMOS-8 comsat with advanced capabilities

Relativity Space raises 35M in Series B funding

CARBON WORLDS
Japan 'rare earth' haul sparks hopes of cutting China reliance

'Everything-repellent' coating could kidproof phones, homes

Swansea scientists discover greener way of making plastics

Large single-crystal graphene could advance scalable 2-D materials

CARBON WORLDS
SPHERE Reveals Fascinating Zoo of Discs Around Young Stars

A Cosmic Gorilla Effect Could Blind the Detection of Aliens

ET Won't Phone Home: Psychologists Say SETI Has Faulty Alien Contact Methods

Brewing up Earth's earliest life

CARBON WORLDS
SSL to provide of critical capabilities for Europa Flyby Mission

Jupiter's turmoil more than skin deep: researchers

New Horizons Chooses Nickname for 'Ultimate' Flyby Target

Jupiter's Great Red Spot getting taller as it shrinks









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.