. 24/7 Space News .
Mountain Winds May Create Atmospheric Hotspots

A 3-d radar image of Andes mountains. Previous observations near the Andes Mountains in Peru had found that the atmosphere directly above some peaks was approximately 100 Kelvin (100 degrees Celsius; 200 degrees Fahrenheit) hotter than in nearby regions and that the difference occasionally reached as much as 400 Kelvin (400 degrees Celsius; 700 degrees Fahrenheit). Other research had recorded similar effects near the Rocky Mountains in Colorado.

Washington DC (SPX) Oct 19, 2005
Rapidly fluctuating wind gusts blowing over mountains and hills can create "hotspots" high in the atmosphere and significantly affect regional air temperatures.

A research paper to be published this month in the Journal of Geophysical Research-Space Physics reports that the actions of such winds can create high-frequency acoustic waves and could stimulate a 1000-Kelvin [1,000-degree Celsius; 2,000-degree Fahrenheit]spike in a short period of time in the thermosphere, at an altitude of 200-300 kilometers [100-200 miles].

Such exceptional temperature increases would require continuous waves, and the heating rate would likely be diminished with intermittent winds.

Richard Walterscheid and Michael Hickey used a theoretical model of the interaction between rough terrain and wind eddies to suggest that high winds may represent a previously unknown source of acoustic waves in the environment.

Ocean waves and earthquakes are known to produce similar waves, which strengthen as they propagate higher in the atmosphere.

The authors speculate that the waves can heat the atmosphere at prodigious rates and could account for a large part of the unusual and unexplained high-altitude background heating seen above the mountainous landscape in parts of South America.

"We show that that the acoustic waves generated by gusty flow over rough terrain might be a significant source of heating in the upper atmosphere," Hickey says. "These mysterious so-called 'hotspots' observed above the Andes Mountains could be explained by such acoustic wave heating."

Previous observations near the Andes Mountains in Peru had found that the atmosphere directly above some peaks was approximately 100 Kelvin [100 degrees Celsius; 200 degrees Fahrenheit] hotter than in nearby regions and that the difference occasionally reached as much as 400 Kelvin [400 degrees Celsius; 700 degrees Fahrenheit]. Other research had recorded similar effects near the Rocky Mountains in Colorado.

After comparing simulations of atmospheric gravity waves and acoustic waves, the researchers found that the acoustic waves reached higher altitudes than the gravity waves, leading them to speculate that the acoustic waves constituted a far more plausible source of the observed hot spots.

They then identified wind fluctuations as the most likely source of the heating, noting that the upwind waves could only be generated by unsteady wind flow.

They cite further evidence indicating that the high- frequency acoustic waves in the thermosphere originated from the ground, including proof that nighttime atmospheric motion (convection) is not a plausible source of the persistent heating.

In addition, they note that only high-frequency acoustic waves could cause the thermospheric heating, as the slower-speed gravity waves are not fast enough to reach the higher altitudes and therefore could not produce the substantial effects at that height in the atmosphere.

The paper indicates that moderately strong winds, reaching speeds of approximately 10 meters [30 feet] per second, can generate wave amplitudes of nearly four meters [10 feet] per second above rough terrain.

In addition, the authors found that steeply sloping terrain further enhanced the waves, which are generated by rapid variations in the up-and-down turbulence in the air. Wider hills and those spaced further apart can also have a similar wave- generating effect, but the authors found that the wind effects typically do not propagate vertically near isolated hills as they do around rougher terrain.

The researchers note that there are very few detailed field studies of the wind field over hills at present. They report, however, that models and previous research indicates that even weak interactions from acoustic waves can produce significant effects in the thermosphere.

Related Links
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Climate Model Predicts Dramatic Changes Over Next 100 Years
West Lafayette IN (SPX) Oct 18, 2005
The most comprehensive climate model to date of the continental United States predicts more extreme temperatures throughout the country and more extreme precipitation along the Gulf Coast, in the Pacific Northwest and east of the Mississippi.







  • 'Star Trek' Actor's Remains To Be Blasted Into Space With Fans' Tributes
  • Tokyo Shortly To Decide On Participation In Russian Kliper Project
  • Northrop Grumman-Boeing Team Unveils Plans For Space Shuttle Successor
  • NASA's Centennial Challenges Collaborates With Foundation

  • Spirit Wiggles Into A Sturdy Workspace
  • Spirit Knows Tests Its Limits, Gets What It Needs From Hillary, Husband Hill
  • Mars Looms Big And Bright As It Swings Close To Earth
  • New Map Provides More Evidence Mars Once Like Earth

  • European Rocket Sends French Military Satellite Aloft
  • Syracuse 3A And Galaxy 15 To Launch October 13
  • ESA Begins Cryosat Launch Failure Probe
  • Russia To Reduce Military At Cosmodrome

  • The Next Generation Blue Marble
  • Wetlands Satellite Mapping Scheme Yielding First Results
  • Interview With Volker Liebig On The Loss Of Cryosat
  • Ice Satellite Loss Was A Disaster, Say Scientists

  • New Horizons Pluto Payload Ready For Flight, Exciting Science Campaign
  • The PI's Perspective: Changes in Latitude
  • New Class of Satellites Discovered As Moon Discovered Orbiting 10th Planet
  • Tenth Planet Has A Moon

  • Integral: Three Years Of Insight Into The Violent Cosmos
  • Lady In Red: Andromeda Galaxy Shines In Spitzer's Eyes
  • HETE-2 Satellite Solves Mystery Of Cosmic Explosions
  • It Takes Three Smithsonian Observatories To Decipher One Mystery Object

  • Ball State Students Developing Model Of Edible Lunar Vehicle
  • Britain Should Put Astronauts On Moon, Mars: Astronomical Society
  • The Da Vinci Glow
  • NASA Selects Team To Build Lunar Lander

  • Symmetricom Announces First IEEE 1588 Network Grandmaster Clock
  • Satellite Navigation to Play More Integral Role Due to Air and Waterway Crowding
  • Navman Expands Its GPS Receiver Product Line With The New Jupiter 21
  • CPS Partners To Play Key Role In Improving Galileo System Performance

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement