Subscribe free to our newsletters via your
. 24/7 Space News .




TECH SPACE
Researchers develop ultra-tough fiber that imitates the structure of spider silk
by Staff Writers
Montreal, Canada (SPX) Jun 16, 2015


Spider silk owes its exceptional strength to the particular molecular structure of the protein chain of which it's composed.

Professors Frederick Gosselin and Daniel Therriault, along with their master's student Renaud Passieux, are not related to Spiderman. Nevertheless, these Polytechnique Montreal researchers have produced an ultra-tough polymer fibre directly inspired by spider silk! They recently published an article about the project in the journal Advanced Materials.

Spider silk: a thread with stunning properties
Three to eight microns in diameter but five to ten times tougher than steel or Kevlar: despite its lightness, spider silk has such remarkable elongation and stretch-resistance properties that humans have long sought to replicate it, in order to make products with those same characteristics.

In large part, spider silk owes its exceptional strength - meaning its ability to absorb a large amount of energy before failing - to the particular molecular structure of the protein chain of which it's composed. The mechanical origin of its strength drew the interest of researchers at the Laboratory for Multiscale Mechanics in Polytechnique Montreal's Department of Mechanical Engineering.

"The silk protein coils upon itself like a spring. Each loop of the spring is attached to its neighbours with sacrificial bonds, chemical connections that break before the main molecular structural chain tears," explained Professor Gosselin, who, along with his colleague Daniel Therriault, is co-supervising Renaud Passieux's master's research work.

He added: "To break the protein by stretching it, you need to uncoil the spring and break each of the sacrificial bonds one by one, which takes a lot of energy. This is the mechanism we're seeking to reproduce in laboratory,"

Imitating nature with polymer fibres
Their project involves making micrometric-sized microstructured fibres that have mechanical properties similar to those of spider silk. "It consists in pouring a filament of viscous polymeric solution toward a sub-layer that moves at a certain speed. So we create an instability," said Renaud Passieux.

"The filament forms a series of loops or coils, kind of like when you pour a thread of honey onto a piece of toast. Depending on the instability determined by the way the fluid runs, the fibre presents a particular geometry. It forms regular periodic patterns, which we call instability patterns."

The fibre then solidifies as the solvent evaporates. Some instability patterns feature the formation of sacrificial bonds when the filament makes a loop and bonds to itself. At that point, it takes a pull with a strong energy output on the resulting fibre to succeed in breaking the sacrificial bonds, as they behave like protein-based spider silk.

"This project aims to understand how the instability used in making the substance influences the loops' geometry and, as a result, the mechanical properties of the fibres we obtain," explained Professor Therriault.

"Our challenge is that the manufacturing process is multiphysical. It draws on concepts from numerous fields: fluid mechanics, microfabrication, strength of materials, polymer rheology and more."

A vast range of applications for future tough fibre composites
These researchers think that one day, there will certainly be composites obtained by weaving together tough fibres of the type they're currently developing. Such composites could, for example, make it possible to manufacture new safer and lighter casings for aircraft engines, which would prevent debris from dispersing in case of explosion. Many other applications can be foreseen, from surgical devices to bulletproof clothing to vehicle parts.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

.


Related Links
Polytechnique Montreal
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





TECH SPACE
New composite material as CO2 sensor
Zurich, Switzerland (SPX) Jun 11, 2015
Material scientists at ETH Zurich and the Max Planck Institute of Colloids and Interfaces in Potsdam have developed a new type of sensor that can measure carbon dioxide (CO2). Compared with existing sensors, it is much smaller, has a simpler construction, requires considerably less energy and has an entirely different functional principle. The new sensor consists of a recently developed co ... read more


TECH SPACE
Crashing comets may explain mysterious lunar swirls

Google Lunar X-Prize meets Yoda

China, Russia plan joint landing on the Moon

NASA's LRO Moves Closer to the Lunar Surface

TECH SPACE
NASA Signs Agreements to Advance Agency's Journey to Mars

New study favors cold, icy early Mars

Scientists find methane in Mars meteorites

Red Planet Rising

TECH SPACE
How to sail through space on sunbeams - solar satellite leads the way

Robotic Tunneler May Explore Icy Moons

XCOR Selects Matrix Composites to Develop Lynx Chines

Spacecraft glitch shifts orbiting ISS: Russia

TECH SPACE
Electric thruster propels China's interstellar ambitions

China Plans First Ever Landing On The Lunar Far Side

China ranked 4th among world space powers

3D printer making Chinese space suit parts

TECH SPACE
Russian, US Scientists to Cooperate in Space Exploration Despite Sanctions

'Hard landing' as three astronauts return to Earth from ISS

ISS Adjusts Orbit to Evade Space Junk

Space station back on track after mystery Soyuz glitch

TECH SPACE
Sentinel-2A satellite ready for Launch from Kourou

Arianespace restructure signals major changes in company governance

SpaceX achieves pad abort milestone approval for Commercial Crew

NASA issues RFP for New Class of Launch Services

TECH SPACE
Helium-Shrouded Planets May Be Common in Our Galaxy

Hubble detects stratosphere-like layer around exoplanet

Work-experience schoolboy discovers a new planet

Hubble in 'Oh Planet, What Art Thou?' 25th Anniversary Video

TECH SPACE
Researchers develop ultra-tough fiber that imitates the structure of spider silk

Turning paper industry waste into chemicals

Radar system approved for allies

First US deep space weather satellite reaches final orbit




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.