. 24/7 Space News .
EARTH OBSERVATION
Monitoring the Matterhorn with millions of data points
by Staff Writers
Zurich, Switzerland (SPX) Aug 17, 2019

10 years permafrost measurement.

The summer heatwave of 2003 triggered a rockfall that shocked both researchers and the general public: 1,500 cubic metres of rock broke away from the Hoernli ridge - a volume roughly equivalent to two houses. The fracture event exposed bare ice on the surface of the steep scarp. Experts soon realised that the record temperatures had warmed the rock down to such a depth that the ice contained in its pores and fissures had melted. This effectively caused a sudden reduction of the bonding holding the rock mass together.

The unpredicted rockfall was the incentive for setting up PermaSense, a unique project consortium bringing together experts from different engineering and environmental research disciplines from ETH Zurich and several other institutions, including the universities of Basel and Zurich.

The project was launched in 2006 with the initial goal of making measurements and observations that had not previously been possible. Using state-of-the-art technology, the researchers were looking to obtain in-situ measurements in steep bedrock permafrost of unprecedented quality and quantity.

Not only were they successful, but the researchers comfortably beat their goal, as they report in an article just published in the journal Earth System Science Data. The study describes a unique 10-year record of high-resolution data captured by scientists on the Hornli ridge of the Matterhorn, 3500 metres above sea level. A total of 17 different sensor types positioned at 29 distinct sensor locations in and around the 2003 rockfall zone delivered 115 million separate data points.

"This data set constitutes the longest, densest and most diverse data record in the history of alpine permafrost research worldwide," says Jan Beutel, Senior Researcher at the Computer Engineering and Networks Laboratory of ETH Zurich, with an understandable sense of pride: he is the driving force behind the initiative.

Using cutting-edge wireless sensors, the researchers have managed to make large volumes of high-quality data available almost in real time, and closely monitor and control the running experiments. "The combined analysis of long-term monitoring obtained from different types of instruments lead to a better understandingof the processes that can lead to the destabilization of steep rock," says Samuel Weber, co-leader of the project and now postdoctoral researcher at TU Munich.

The sensor network also comprises an automatic high-resolution camera that takes photos of the fracture site every two minutes. "Crackmeters" measure the widening of the fissures and the displacement of boulders. Temperatures are measured at various depths in the rock face, as well as on the surface. Inclinometers and GPS sensors permanently measure how much larger rock partitions as well as the whole mountain ridge are deforming and gradually tilting towards the valley. In recent years the researchers have added equipment for measuring acoustic emissions and microseismic data.

The data are relayed via WLAN from the Hoernli ridge to the summit station of the cable car of the Klein Matterhorn nearby, from where they are transmitted in real time via the Internet to ETH Zurich's data centre.

Here they are continuously captured, analysed and assessed - and have been for the past 10 years, around the clock, whatever the weather.

"Over the past three years of our project, the incorporation of more complex seismic data have been particularly useful in helping us to quantify what we were keen to research from the start: the destabilization leading to rockfall. This has helped us identify patterns in the signals from the mountain that enable us to capture such events," Beutel says.

Measuring the resonance frequencies of the rockface
The use of seismic sensing systems made it possible to detect many different signals - such as the formation of cracks initially invisible and hidden in the rockface - which the previous sensors were unable to capture. "Seismic sensors capture much more data, and offer us unprecedented information density and analysis opportunities," says the electrical engineer. But these sensors have several drawbacks: they need cables, more power, and deep bore holes, which first have to be drilled. And they also record signals which have nothing to do with the mountain, such as the footsteps of climbers on their way to the Matterhorn summit.

The researchers first had to remove all the ambient noise from these data using machine learning and smart algorithms which were programmed directly into the wireless sensors by the ETH doctoral students currently involved in the project. In order to test against ground truth they also fed the algorithms with data recorded at the Hoernli hut, where mountaineers climbing the Matterhorn spend the night. The number of people staying overnight and climbing each serve as an indication when people climbing the mountain are creating interference.Analysis of the filtered seismic data provide an interesting picture for Beutel: "The resonance frequencies that occur in the rocks vary considerably over the course of the year."

This phenomenon is linked to the freezing and thawing processes on the mountain. Many micro-cracks and fissures are filled with ice and sediment, and this mix is frozen rock-hard in the winter. When this thaws in the summer, the bonding in the fissures changes. The freely vibrating rock mass enlarges, and as a result the resonance frequency decreases. The reverse is happening in winter: the resonance frequency of the rock mass increases.

"It's the same principle as on a guitar - the tone depends on where you grip the strings creating different length vibrating elements," Beutel explains.

"Very abrupt changes in the pattern of these resonance frequencies would indicate that the stability of part of the rockface has changed," Beutel says. If the frequencies drop, it may mean that existing fissures have deepened or opened up possibly indicating an emerging rockfall of a sizeable mass.

"Using seismic and acoustic data, combined with measurements of crack widths and photos of the investigation site, we can identify quite precisely how the permafrost is changing and make predictions about problems starting to develop," Beutel says. "I consider this to be one of the best achievements to date of the PermaSense project."

He says this is all thanks to his project partner, Samuel Weber, who spent the past three years writing a ground-breaking thesis on this topic at the University of Zurich. Another key factor was the involvement of ETH Professor Donath Fah and the Swiss Seismological Service, who provided the seismology expertise.

Sudden opening of rock cracks
The measurement project on the Matterhorn is not over yet, but still ongoing. While it is still running, Beutel is keen to transfer the know-how gained from the "Horu", the local name for the iconic mountain, to other projects and sites. The technical and geological expertise acquired can now be applied to the forecasting of natural hazard event.

Research paper


Related Links
ETH Zurich
Earth Observation News - Suppiliers, Technology and Application


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


EARTH OBSERVATION
Making sense of remote sensing data
Washington DC (SPX) Aug 12, 2019
Remote sensor technologies like cameras, GPS trackers, and weather stations have revolutionized biological data collection in the field. Now researchers can capture continuous datasets in difficult terrain, at a scale unimaginable before these technologies became available. But as this flood of data has rolled into laboratory computers around the world, researchers have found themselves without well-developed analytical tools to make sense of it all. In research presented in a recent issue of Appl ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EARTH OBSERVATION
The first DJ in space

Solar sail craft could revolutionize space travel

Virgin Galactic unveils new Mission Control for space tourism

Brain games hosted by Keegan-Michael Key will test perceptions with a live audience

EARTH OBSERVATION
Secret Russia weapon project: gamechanger or PR stunt?

Bolton says Russia 'stole' US hypersonic technology

US detect explosion of old European Ariane 4 rocket in space

Chinese space startup to send heavy satellite

EARTH OBSERVATION
Robotic toolkit added to NASA's Mars 2020 Rover

NASA descends on Icelandic lava field to prepare for Mars

Roscosmos postpones joint ESA ExoMars mission after failed parachute tests

Methane not released by wind on Mars, experts find

EARTH OBSERVATION
China launches first private rocket capable of carrying satellites

Chinese scientists say goodbye to Tiangong-2

China's space lab Tiangong 2 destroyed in controlled fall to earth

From Moon to Mars, Chinese space engineers rise to new challenges

EARTH OBSERVATION
ThinKom Solutions Unveils New Multi-Beam Reconfigurable Phased-Array Gateway Solution for Next-Generation Satellites

Embry-Riddle plans expansion of its Research Park through partnership with Space Square

OneWeb secures global spectrum further enabling global connectivity services

Companies partner to offer a complete solution for space missions as a service

EARTH OBSERVATION
SEAKR reports Canada Patent for Advanced ASIC RF processing technology for satellite applications

Russia proposes self-destroying satellite to resolve space debris problem

Radiation up to '16 times' the norm near Russia blast site

Norway detects radioactive iodine near Russia

EARTH OBSERVATION
New "Gold Open Access" Planetary Science Journal Launched

Timeline suggests 'giant planet migration' was earlier than predicted

How Many Earth-like Planets Are Around Sun-like Stars

NASA plans for Webb to zero in on TRAPPIST-1 atmospheres within a year of launch

EARTH OBSERVATION
Young Jupiter was smacked head-on by massive newborn planet

Young Jupiter Was Smacked Head-On by Massive Newborn Planet

Hubble showcases new portrait of Jupiter

Jupiter's auroras powered by alternating current









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.