Subscribe free to our newsletters via your
. 24/7 Space News .




Subscribe free to our newsletters via your




















ENERGY TECH
Molecular microscopy illuminates molecular motor motion
by Staff Writers
University Park PA (SPX) Jul 27, 2017


Kinesin with vesicle is attached with two "feet" to the cell's microtubule. This is a safe and stable time period. The kinesin untethers its back foot and moves it forward. This is a vulnerable time period when the whole complex could lose its grip. Finally the loose foot attaches to the microtubule in front and the system is once again stable. Image courtesy Keith Mickolajczyk and Penn State.

A toddler running sometimes loses footing because both feet come off the ground at the same time. Kinesin motors that move materials around in cells have the same problem, which limits how fast they can traverse a microtubule in the cell and carry cargo, according to Penn State researchers who have now seen these kinesin motors move using an unusual microscope and tagging method.

"We can now see biological processes at molecular resolution and at sub-millisecond time scales," said William O. Hancock, professor of biomedical engineering and director of the Intercollege Graduate Program in Bioengineering, Penn State. "To understand how motors work on a nanoscale and millisecond scale we need to see how the motors are walking. We know that neurons require transport for them to grow and survive, and materials need to travel from one end (of the neuron) to the other."

Molecular motors, in this case kinesins, are little machines that use chemical energy to generate mechanical forces sufficient to carry materials through the cell. These molecules have two limbs joined together with attachment devices on the ends that researchers call "heads" but would be better thought of as "feet."

"Diseases like Alzheimer's, ALS and others, have defects in the transport process (in neurons) and it is not understood at the molecular level what defects are and how they affect transport," said Hancock. "We think roadblock proteins bind to the microtubule tracks and impede motor movement. We can measure steps at the roadblock, and hopefully it will help us understand the disease states where transport isn't working."

When a kinesin molecule moves from the center of a microtubule toward the end, it is typically carrying cargo. One "foot" attaches to the tubule and then the other back "foot" detaches, swings over and attaches. The molecules are very stable in the short moment when both "feet" are attached, but less so at the time of detachment. The coordination of attachment and release are critical in the molecule successfully walking down the tubule.

Hancock and Keith J. Mickolajczyk, doctoral candidate in bioengineering, note in a recent issue of Biophysical Journal, that "Despite its fundamental importance to the diversity of tasks that kinesins carry out in cells, no existing quantitative model fully explains how structural differences between kinesins alter kinetic rates ... to produce functional changes in processivity."

Processivity is the average number of steps the molecular motor can take before it detaches from the microtubule and another must take its place.

Mickolajczyk built the high-resolution, single-molecule microscope so that the researchers could directly see the molecular motor move. To do this, they tagged the molecule on one "foot" with a gold nanoparticle. This allowed the researchers to follow the molecule by reflecting various types of light off the gold.

The researchers found they could model the kinesin movement as a race between attachment of the forward "foot" and detachment of the rear "foot." This walking pattern is governed both by the chemical actions of energy release from adenosine triphosphate - the biological energy storage molecule - and the mechanical push and pull of tethering and untethering. Altering various properties of the kinesin changes the attachment and detachment rates.

Kinesins usually carry their cargo in vesicles - balloon-like, water-filled sacs inside cells. More than one kinesin motor can haul a vesicle at a time, and the motors fall off and are replaced by other kinesin motors during the movement along the tubule. The kinesin "feet" have defined locations on the tubules at which to bind.

"Clarifying these stepping kinetics is very satisfying because these questions have been around for 20 years, but only now do we have the technology to answer them," said Hancock.

ENERGY TECH
High-temperature superconductivity in B-doped Q-carbon
Raleigh NC (SPX) Jul 25, 2017
Researchers at North Carolina State University have significantly increased the temperature at which carbon-based materials act as superconductors, using a novel, boron-doped Q-carbon material. The previous record for superconductivity in boron-doped diamond was 11 Kelvin, or minus 439.60 degrees Fahrenheit. The boron-doped Q-carbon has been found to be superconductive from 37K to 57K, whi ... read more

Related Links
Penn State
Powering The World in the 21st Century at Energy-Daily.com

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
ESA astronaut Paolo Nespoli starts third mission on Space Station

Voyager spacecraft still in communication 40 years out into the void

NextSTEP Partners Develop Ground Prototypes to Expand our Knowledge of Deep Space Habitats

Three-man crew reaches International Space Station

ENERGY TECH
Iran in 'successful' test of satellite-launch rocket

ISRO Develops Ship-Based Antenna System to Track Satellite Launches

India looks to more launches with new facility from 2018

Sea Launch to be modernized for Russia's Soyuz-5 carrier rocket

ENERGY TECH
Eclipse Balloons to Study Effect of Mars-Like Environment on Life

Portals to new worlds: Martian exploration near the North Pole

Opportunity enters Automode during solar conjunction pause

Five Years Ago and 154 Million Miles Away: Touchdown!

ENERGY TECH
China develops sea launches to boost space commerce

Chinese satellite Zhongxing-9A enters preset orbit

Chinese Space Program: From Setback, to Manned Flights, to the Moon

Chinese Rocket Fizzles Out, Puts Other Launches on Hold

ENERGY TECH
Iridium Announces Third Iridium NEXT Launch Date

Airbus DS to expand cooperation with Russia

UK space companies to develop international partnerships

ASTROSCALE Raises a Total of $25 Million in Series C Led by Private Companies

ENERGY TECH
JV with Russia to build up to 50 satellite solid-state power amplifiers

NASA enhances online scientific tool used by hundreds Worldwide

ARCTEC receives contract for Air Force radar sites in Alaska

WSU physicists turn a crystal into an electrical circuit

ENERGY TECH
Unexpected life found at bottom of High Arctic lakes

Researchers detect exoplanet with glowing water atmosphere

Hubble detects exoplanet with glowing water atmosphere

An Earth-like atmosphere may not survive Proxima b's orbit

ENERGY TECH
New Horizons Video Soars over Pluto's Majestic Mountains and Icy Plains

Juno spots Jupiter's Great Red Spot

New evidence in support of the Planet Nine hypothesis

NASA's New Horizons Team Strikes Gold in Argentina




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement