. 24/7 Space News .
ROBO SPACE
Minimalist swimming microrobots
by Staff Writers
Washington DC (SPX) Jul 22, 2016


This is a trajectory of a microswimmer displaying a circle pattern.

When scaling down robots to the micrometer scale for tiny tasks such as incising tissue and puncturing retinal veins, minimalism is key. To make smaller, simpler microrobots, researchers at Drexel University have developed a fabrication method which utilizes the minimum geometric requirements for fluid motion - consisting of just two conjoined microparticles coated with bits of magnetic debris.

When a microrobot is exposed to an external magnetic field - the offboard power source, given the difficulty in shrinking batteries to the size of bacteria - it begins to spin and move in a manner similar to bacterial flagella, courtesy of the iron oxide debris.

"Such simple microswimmers circumvent the technical limitations of fabrication technologies, which effectively allow for a focus on the functionalization of microswimmers," said MinJun Kim, a professor in the Mechanical Engineering and Mechanics Department at Drexel University in Philadelphia. "Furthermore, the use of particles to create these microswimmers will synergize well with other micro- and nanoparticle based technologies such as nanoparticle drug delivery systems."

Kim and his colleagues discuss their work this week in Applied Physics Letters, from AIP Publishing. Previous work for the researchers had included a paper on the minimal geometrical requirements to fabricate microswimmers that operate at low Reynolds numbers, a ratio of forces that determines the degree of turbulence for fluids and objects under flow conditions.

At low Reynolds numbers, Kim said, inertial forces become negligible, and viscous forces become dominant. This rules out reciprocal motion - such as the way a fish uses their fins - so the microswimmers must rely on nonreciprocal motion similar to that of bacterial flagella, in which rotational motion is converted to translational motion.

The researchers fabricated their particle-based microswimmers through chemical conjugation and magnetic self-assembly. To bind the four micrometer-wide magnetic beads into pairs, Kim and his colleagues prepared two batches separately coated with avidin and biotin proteins, which create one of the strongest naturally found non-covalent bonds. They then exposed these conjoined pairs to one-micrometer iron oxide flakes, which became magnetically adhered to the microsphere surfaces.

This stands in contrast to many existing methods of fabrication in which microrobots are fabricated using specialized chemistry and lithography methods, some of which involve molds and elastomeric materials.

After fabrication, the researchers placed samples of the microswimmers inside a simple chamber fabricated from PDMS, a common silicon-based organic polymer. The chamber was then placed inside an electromagnetic coil system that was mounted onto a microscope with external controls to manipulate the strength, rotation frequency and direction of the magnetic field. These allowed for control over the swimming motion, speed and heading direction of the microswimmers.

"Our results demonstrated successful control over the microswimmers' swimming speed and direction," Kim said. "The significance of the results is the demonstration that such extremely simple microswimmers can be fully controllable at low Reynolds number."

Future work for Kim's lab - which has recently been relocated to Southern Methodist University in Dallas, Texas - will include replacing the magnetic debris with nanoparticles for a systematic investigation of particle size, ultimately testing the range of applications of the robots.

The article, "Fabrication and control of simple low Reynolds number microswimmers," is authored by U. Kei Cheang and Min Jun Kim. It will appear in the journal Applied Physics Letters on July 19, 2016 (DOI: 10.1063/1.4954946).


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
American Institute of Physics
All about the robots on Earth and beyond!






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
ROBO SPACE
U.S. and U.K. to study robotic troop re-supply
London (UPI) Jul 15, 2016
The United Kingdom and the United States announced a program Thursday to speed up development of robotic and autonomous systems that can resupply troops in tough environments. The program, expected to last up to four years, seeks to mitigate "the last mile," or the final stage of transporting supplies to troops in challenging environments, the British Ministry of Defense said in a state ... read more


ROBO SPACE
SSTL and Goonhilly announce partnership and a call for lunar orbit payloads

Russian and US engineers plan manned moon mission

Asteroid that formed moon's Imbrium Basin may have been protoplanet-sized

Taiwan to make lunar lander for NASA moon-mining mission

ROBO SPACE
NASA's Viking Data Lives on, Inspires 40 Years Later

Opportunity Rover wrapping up work within Marathon Valley

NASA Mars Rover Can Choose Laser Targets on Its Own

NASA Selects Five Mars Orbiter Concept Studies

ROBO SPACE
NASA Sails Full-Speed Ahead in Solar System Exploration

Disney theme park in Shanghai nears a million visitors

Sensor Technology Could Revolutionize What You Sleep On

Return to light for underground astronauts

ROBO SPACE
China's second space lab Tiangong-2 reaches launch center

China commissions space tracking ship as new station readied

Dutch Radio Antenna to Depart for Moon on Chinese Mission

Chinese Space Garbageman is not a Weapon

ROBO SPACE
Russia launches ISS-bound cargo ship

New Crew Members, Including NASA Biologist, Launch to Space Station

Russian New Soyuz-MS Spacecraft Docks With ISS for First Time

NASA Highlights Space Station Research Benefits, Opportunities at San Diego Conference

ROBO SPACE
SpaceX cargo ship arrives at space station

Ukraine, US aim to launch jointly-developed space rocket

SpaceX propels cargo to space station, lands rocket

SpaceX to launch key 'parking spot' to space station

ROBO SPACE
Gemini Observatory Instrumental in Latest Exoplanet Harvest

First atmospheric study of Earth-sized exoplanets reveals rocky worlds

Atmospheric chemistry on paper

NASA's Kepler Confirms 100+ Exoplanets During Its K2 Mission

ROBO SPACE
Fallout Fungi From Chernobyl Flee Earth on ISS Radiation Study Mission

NASA to Begin Testing Next Generation of Spacecraft Heat Exchangers

Passive Attitude Control For Small Satellites

Active tracking of astronaut rad-exposures targeted









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.