Subscribe free to our newsletters via your
. 24/7 Space News .


Subscribe free to our newsletters via your




















STELLAR CHEMISTRY
Millisecond Pulsars Likely Account for Signal in Galactic Center
by Staff Writers
Amsterdam, Netherlands (SPX) Feb 05, 2016


Millisecond pulsars, or rapidly rotating neutron stars, were often formed billions of years ago. They are among the most extreme objects in the galaxy. A population of hundreds or thousands of these millisecond pulsars must be lurking in the galactic center, hidden from detection due to present day instrument sensitivity.

The puzzling excess of gamma rays from the center of the Milky Way probably originates from rapidly rotating neutron stars, or millisecond pulsars, and not from dark matter annihilation, as previously claimed.

This is the conclusion of new data analyzes by two independent research teams from the University of Amsterdam (UvA) and Princeton University/Massachusetts Institute of Technology. The researchers' findings are published in Physical Review Letters.

In 2009 observations with the Fermi Large Area Telescope revealed an excess of high-energy photons, or gamma rays, around 2 GeV (giga-electron volts) at the center of our galaxy. It was long speculated that this gamma ray excess could be a signal of dark matter annihilation. If true, it would constitute a breakthrough in fundamental physics and a major step forward in our understanding of the matter constituents of the universe.

However, many other hypotheses have emerged in recent years, suggesting the gamma ray excess in the center of our galaxy might have a more ordinary, astrophysical cause. Possible origins for the observed gamma ray excess range from the activity of the supermassive black hole in the center of our Milky Way and star formation in the central molecular zone to the combined emission of a new dim source population in the galactic bulge.

Millisecond Pulsars
New statistical analyzes of the Fermi data by Dr. Christoph Weniger, assistant professor at the UvA, and a research group from Princeton/MIT now strongly suggest that the excess emission does indeed originate from unresolved point sources. The best candidates are millisecond pulsars, the researchers conclude.

Millisecond pulsars, or rapidly rotating neutron stars, were often formed billions of years ago. They are among the most extreme objects in the galaxy. A population of hundreds or thousands of these millisecond pulsars must be lurking in the galactic center, hidden from detection due to present day instrument sensitivity. Future radio surveys with existing and upcoming telescopes (e.g., Green Bank Telescope, Square Kilometre Array) will be able to further test this hypothesis in the coming years.

Win-Win Situation
In their analyzes, the UvA and Princeton/MIT researchers each used a different statistical technique, 'non-Poissonian noise' and 'wavelet transformation,' to analyze the Fermi data. What they found was that the distribution of photons was clumpy rather than smooth, indicating that the gamma rays were unlikely to be caused by dark matter particle collisions.

According to Weniger, lead author of one of the papers, this is a win-win situation: "Either we find hundreds or thousands of millisecond pulsars in the upcoming decade, shedding light on the history of the Milky Way, or we find nothing. In the latter case, a dark matter explanation for the gamma ray excess will become much more obvious."

Mariangela Lisanti, assistant professor at Princeton University and one of the authors of the second paper, adds: "The results of our analysis probably mean that what we are seeing is evidence for a new population of astrophysical sources in the center of the galaxy. That in itself is something new and surprising."

References: "Strong Support for the Millisecond Pulsar Origin of the Galactic Center GeV Excess," Richard Bartels, Suraj Krishnamurthy and Christoph Weniger, 2016 Feb. 4, Physical Review Letters - "Evidence for Unresolved Gamma-Ray Point Sources in the Inner Galaxy," Samuel K. Lee, Mariangela Lisanti, Benjamin R. Safdi, Tracy R. Slatyer and Wei Xue, 2016 Feb. 4, Physical Review Letters

.


Related Links
University of Amsterdam
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
STELLAR CHEMISTRY
Giant gas cloud boomeranging back into Milky Way
Notre Dame IN (SPX) Jan 29, 2016
Since astronomers discovered the Smith Cloud, a giant gas cloud plummeting toward the Milky Way, they have been unable to determine its composition, which would hold clues as to its origin. University of Notre Dame astrophysicist Nicolas Lehner and his collaborators have now determined that the cloud contains elements similar to our sun, which means the cloud originated in the Milky Way's outer ... read more


STELLAR CHEMISTRY
ASU satellite selected for NASA Space Launch System's first flight

Lunar Flashlight selected to fly as secondary payload on Exploration Mission-1

Phase of the moon affects amount of rainfall

Russia postpones manned Lunar mission to 2035

STELLAR CHEMISTRY
Sandy Selfie Sent from NASA Mars Rover

Opportunity Reaches 12 Years on Mars!

4 people to live in an HERA habitat for 30 days at JSC

Getting real - on Mars

STELLAR CHEMISTRY
Astronaut rescue exercise proves Det. 3 command, control ready to support DoD, NASA

Innovations in the Air

Challenger disaster at 30: Did the tragedy change NASA for the better?

Voyager Mission Celebrates 30 Years Since Uranus

STELLAR CHEMISTRY
Last Launch for Long March 2F/G

China aims for the Moon with new rockets

China shoots for first landing on far side of the moon

Chinese Long March 3B to launch Belintersat-1 telco sat for Belarus

STELLAR CHEMISTRY
Russians spacewalk to retrieve biological samples

Russian spacewalk marks end of ESA's exposed space chemistry

New Tool Provides Successful Visual Inspection of ISS Robot Arm

Russian Cosmonauts to Attach Thermal Insulation to ISS

STELLAR CHEMISTRY
NASA tests solar sail deployment for asteroid-surveying CubeSat NEA Scout

Space Launch System's first flight will launch small Sci-Tech cubesats

Pentagon Can't Overcome Its Russian Engines Addiction: McCain

Initial launcher assembly clears Ariane 5 for its payload integration process

STELLAR CHEMISTRY
Astronomers discover largest solar system

Lonely Planet Finds a Mum a Trillion Km Away

Follow A Live Planet Hunt

Lab discovery gives glimpse of conditions found on other planets

STELLAR CHEMISTRY
NASA's ICESat-2 equipped with unique 3-D manufactured part

Novel 4-D printing method blossoms from botanical inspiration

Will Space Debris be Responsible for World War III?

Controlling the magnetic properties of individual iron atom




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News








The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.