Subscribe free to our newsletters via your
. 24/7 Space News .




Subscribe free to our newsletters via your




















ICE WORLD
Methane seeps in the Canadian high Arctic
by Staff Writers
Boulder CO (SPX) Apr 20, 2017


This is the first methane mound, Canadian High Arctic. Image courtesy Stephen Grasby and Geological Society of America Bulletin.

Cretaceous climate warming led to a significant methane release from the seafloor, indicating potential for similar destabilization of gas hydrates under modern global warming. A field campaign on the remote Ellef Ringnes Island, Canadian High Arctic, discovered an astounding number of methane seep mounds in Cretaceous age sediments.

Seep mounds are carbonate deposits, often hosting unique fauna, which form at sites of methane leakage into the seafloor. Over 130 were found covering over 10,000 square kilometers of the Cretaceous sea floor. They occurred over a very short time interval immediately following onset of Cretaceous global warming, suggesting that the warming destabilized gas hydrates and released a large burb of methane. Given that methane has 20 times the impact of CO2 as a greenhouse gas, such a release could have accelerated global warming at that time. This discovery supports concerns of potential destabilization of modern methane hydrates.

A field campaign was run during 2009-2011 to map the geology of Ellef Ringnes Island. Around the same size as Jamaica, this is one of the most remote and difficult to access islands in the Canadian High Arctic, and as such not much was known about the geology.

A remote helicopter supported field camp was established in 2009, with a peak of 30 geoscientists working from the camp in 2010 as part of the Geological Survey of Canada's GEM Program. The island, and its neighbor Amund Ringnes Island, were named after brothers who founded Norway's Ringnes Brewery that funded the exploration of the region conducted by Otto Sverdrup in the early 1900s

As part of this work, Krista Williscroft, Stephen Grasby, and colleagues intended to reinvestigate strange spaghetti-like rock that was noticed, but the origin not understood, during the first geologic mapping of the island in the 1970s. Years later, a geologist saw a sample of this feature sitting on his colleague's desk and was intrigued by its spaghetti like nature. Chemical analyses revealed that this was a carbonate rock formed by the oxidation of methane, and the spaghetti texture was formed by fossil tube worms.

This was shortly after the first discovery of methane cold seeps in the modern oceans and became the first recognition of such features in the geologic record. In this case, it was known to have formed during the Cretaceous, the time of the dinosaurs roamed the earth, around 110 million years ago. Sadly, these original samples were lost, and given the remoteness of the location, it was not possible to gain more, limiting any further work.

Methane Cold Seeps
Methane cold seeps are similar to the more famous black smokers in that they form isolated ecosystems as oasis in the deep ocean, but are lower temperatures and form away from mid-ocean ridges. They forms at sites were natural methane gas leaks into seawater. Microbes oxidase this methane as a source of energy and produce carbonate deposits as a by-product.

In the modern world, these sites are characterized by an unusual abundance of tube worms, bivalves (clams), molluscs, and other animals that survive on the microbial mats that grow there. In the rock record, they stand out as very unusual features that have this strange spaghetti-like appearance related to fossil tube worms and an abundance of other fossils. As they form in deep water they also stand out as resistant carbonate mounds in rock that is otherwise easily eroded shale.

New Discovery
In 2010 the intention was to revisit the site first discovered in the 1970s. It stood out as a small mound on the otherwise rolling landscape of arctic tundra. From this site another mound could be seen in the distance, which raised the tantalizing possibility of a second site.

Some hard walking through thick mud paid off when it was reached, revealing another fossil methane seep. From there a further mound could be seen, and on and on. This lead to more than four weeks of trudging from mound to mound through muddy tundra, and the discovery of over 130 methane seep mounds in the rock record. This is now one of the most extensive sites of these features known anywhere in the world, covering more than 10,000 square kilometers.

Implications
A key feature of this discovery is recognition that all the seep mounds formed during a very narrow range of geologic time. Because they form by leakage of methane into seawater it implies that something at that time caused a large release of methane into the ocean. The timing is coincident with a period of global warming, and Williscroft and colleagues suggest that it was this warming that released methane frozen as methane hydrates in the sea floor, as a relatively sudden methane "burp."

If correct, this has important implications for modern warming of the Arctic Ocean. Similar frozen methane hydrates occur throughout the same arctic region as they did in the past, and warming of the ocean and release of this methane is of key concern as methane is 20x the impact of CO2 as a greenhouse gas.

Release of methane hydrates has previously been suggested as a mechanism to drive runaway greenhouse events, as warming oceans releases trapped methane that causes further warming and releases more methane. The extensive methane seep mounds across the remote arctic island of Ellef Ringnes may be a caution from the past regarding potential impacts of modern warming of the Arctic Ocean.

Research paper: Extensive Cretaceous methane seepage, Ellef Ringnes Island, Canadian High Arctic Krista Williscroft, Stephen E. Grasby, Benoit Beauchamp, Crispin T.S. Little, Keith Dewing, Daniel Birgel, Terry Poulton, and Krzysztof Hryniewicz

ICE WORLD
How polar bears find their prey
Edmonton, Canada (SPX) Apr 20, 2017
Researchers at the University of Alberta have demystified the way that polar bears search for their typical prey of ringed seals. The answer, it turns out, is simple: they follow their nose using the power of wind. Using satellite telemetry data collected from 123 adult polar bears in Canada's Hudson Bay over 11 years, the researchers merged the movements of polar bears with wind patterns ... read more

Related Links
Geological Society of America
Beyond the Ice Age

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ICE WORLD
Russian, American two-man crew reaches ISS

Russian, American two-man crew blasts off to ISS

NASA Engages the Next Generation with HUNCH

Orbital ATK launches cargo to space station

ICE WORLD
Russia and US woo Brazil, hope to use advantageous base for space launches

Creation of carrier rocket for Baiterek Space Complex to cost Russia $500Mln

Dream Chaser to use Europe's next-generation docking system

Europe's largest sounding rocket launched from Esrange

ICE WORLD
Researchers Produce Detailed Map of Potential Mars Rover Landing Site

Mars Rover Opportunity Leaves 'Tribulation'

Mars spacecraft's first missions face delays, NASA says

France, Japan aim to land probe on Mars moon

ICE WORLD
China launches first cargo spacecraft Tianzhou-1

Ticking Boxes with Tianzhou

Yuanwang fleet to carry out 19 space tracking tasks in 2017

China Develops Spaceship Capable of Moon Landing

ICE WORLD
Airbus and Intelsat team up for more capacity

Commercial Space Operators To Canada: "We're Here, and We can Help"

Antenna Innovation Benefits the Government Customer

Ukraine in talks with ESA to become member

ICE WORLD
Nature: 3-D-printing of glass now possible

Engineering technique is damaging materials research reveals

Finding order and structure in the atomic chaos where materials meet

Two-dimensional melting of hard spheres experimentally unravelled after 60 years

ICE WORLD
Oceans Galore: Most Habitable Planets May Lack Dry Land

Potentially Habitable Super-Earth is a Prime Target for Atmospheric Study

Evidence for Habitable Region Within Saturn's Moon Enceladus

Science fiction horror wriggles into reality with discovery of giant sulfur-powered shipworm

ICE WORLD
ALMA investigates 'DeeDee,' a distant, dim member of our solar system

Nap Time for New Horizons

Hubble spots auroras on Uranus

Cold' Great Spot discovered on Jupiter




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement