Subscribe free to our newsletters via your
. 24/7 Space News .




STELLAR CHEMISTRY
Merging galaxies break radio silence
by Staff Writers
Paris (ESA) May 31, 2015


This artist's impression illustrates how high-speed jets from supermassive black holes would look. These outflows of plasma are the result of the extraction of energy from a supermassive black hole's rotation as it consumes the disc of swirling material that surrounds it. These jets have very strong emissions at radio wavelengths. Image courtesy ESA/Hubble, L. Calcada (ESO). For a larger version of this image please go here.

In the most extensive survey of its kind ever conducted, a team of scientists have found an unambiguous link between the presence of supermassive black holes that power high-speed, radio-signal-emitting jets and the merger history of their host galaxies. Almost all of the galaxies hosting these jets were found to be merging with another galaxy, or to have done so recently.

The results lend significant weight to the case for jets being the result of merging black holes and will be presented in the Astrophysical Journal.

A team of astronomers using the NASA/ESA Hubble Space Telescope's Wide Field Camera 3 (WFC3) have conducted a large survey to investigate the relationship between galaxies that have undergone mergers and the activity of the supermassive black holes at their cores.

The team studied a large selection of galaxies with extremely luminous centres - known as active galactic nuclei (AGNs) - thought to be the result of large quantities of heated matter circling around and being consumed by a supermassive black hole. Whilst most galaxies are thought to host a supermassive black hole, only a small percentage of them are this luminous and fewer still go one step further and form what are known as relativistic jets [1].

The two high-speed jets of plasma move almost with the speed of light and stream out in opposite directions at right angles to the disc of matter surrounding the black hole, extending thousands of light-years into space. The hot material within the jets is also the origin of radio waves.

It is these jets that Marco Chiaberge from the Space Telescope Science Institute, USA (also affiliated with Johns Hopkins University, USA and INAF-IRA, Italy) and his team hoped to confirm were the result of galactic mergers [2].

The team inspected five categories of galaxies for visible signs of recent or ongoing mergers - two types of galaxies with jets, two types of galaxies that had luminous cores but no jets, and a set of regular inactive galaxies [3].

"The galaxies that host these relativistic jets give out large amounts of radiation at radio wavelengths," explains Marco. "By using Hubble's WFC3 camera we found that almost all of the galaxies with large amounts of radio emission, implying the presence of jets, were associated with mergers. However, it was not only the galaxies containing jets that showed evidence of mergers!" [4].

"We found that most merger events in themselves do not actually result in the creation of AGNs with powerful radio emission," added co-author Roberto Gilli from Osservatorio Astronomico di Bologna, Italy. "About 40% of the other galaxies we looked at had also experienced a merger and yet had failed to produce the spectacular radio emissions and jets of their counterparts."

Although it is now clear that a galactic merger is almost certainly necessary for a galaxy to host a supermassive black hole with relativistic jets, the team deduce that there must be additional conditions which need to be met. They speculate that the collision of one galaxy with another produces a supermassive black hole with jets when the central black hole is spinning faster - possibly as a result of meeting another black hole of a similar mass - as the excess energy extracted from the black hole's rotation would power the jets.

"There are two ways in which mergers are likely to affect the central black hole. The first would be an increase in the amount of gas being driven towards the galaxy's centre, adding mass to both the black hole and the disc of matter around it," explains Colin Norman, co-author of the paper.

"But this process should affect black holes in all merging galaxies, and yet not all merging galaxies with black holes end up with jets, so it is not enough to explain how these jets come about. The other possibility is that a merger between two massive galaxies causes two black holes of a similar mass to also merge. It could be that a particular breed of merger between two black holes produces a single spinning supermassive black hole, accounting for the production of jets."

Future observations using both Hubble and ESO's Atacama Large Millimeter/submillimeter Array (ALMA) are needed to expand the survey set even further and continue to shed light on these complex and powerful processes.

Notes:
[1] Relativistic jets travel at close to the speed of light, making them one of the fastest astronomical objects known.

[2] The new observations used in this research were taken in collaboration with the 3CR-HST team. This international team of astronomers is currently led by Marco Chiaberge and has conducted a series of surveys of radio galaxies and quasars from the 3CR catalogue using the Hubble Space Telescope.

[3] The team compared their observations with the swathes of archival data from Hubble. They directly surveyed twelve very distant radio galaxies and compared the results with data from a large number of galaxies observed during other observing programmes.

[4] Other studies had shown a strong relationship between the merger history of a galaxy and the high levels of radiation at radio wavelengths that suggests the presence of relativistic jets lurking at the galaxy's centre. However, this survey is much more extensive, and the results very clear, meaning it can now be said with almost certainty that radio-loud AGNs, that is, galaxies with relativistic jets, are the result of galactic mergers.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
ESA/Hubble Information Centre
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








STELLAR CHEMISTRY
A bubbly cosmic celebration
Munich, Germany (SPX) May 31, 2015
This new image from ESO's Very Large Telescope (VLT) in Chile shows a spectacular red cloud of glowing hydrogen gas behind a collection of blue foreground stars. Within RCW 34 - located in the southern constellation of Vela - a group of massive young stars hide in the brightest region of the cloud [1]. These stars have a dramatic effect on the nebula. Gas exposed to strong ultraviolet radi ... read more


STELLAR CHEMISTRY
Crashing comets may explain mysterious lunar swirls

Google Lunar X-Prize meets Yoda

China, Russia plan joint landing on the Moon

NASA's LRO Moves Closer to the Lunar Surface

STELLAR CHEMISTRY
United Arab Emirates Hopes to Reach Mars by2021

NASA Begins Testing Next Mars Lander Insight

The Supreme Council of Parachute Experts

Science Drives NASA's Journey to Mars

STELLAR CHEMISTRY
LightSail reestablishes communication with mission control

US Lawmakers Pass Bill for Space Mining in the Future

NASA pushes flying saucer parachute test to Thursday

NASA's Exploration Plans Include Living Off the Land

STELLAR CHEMISTRY
China Plans First Ever Landing On The Lunar Far Side

China ranked 4th among world space powers

3D printer making Chinese space suit parts

Xinhua Insight: How China joins space club?

STELLAR CHEMISTRY
NASA Delays Approval on International Space Station Projects

Space age mice are thin-skinned

Space Station remodelling

NASA Begins Major Reconfiguration of International Space Station

STELLAR CHEMISTRY
Recent Proton loss to push up launch costs warns manufacturer

Air Force Certifies SpaceX for National Security Space Missions

SpaceX cleared for US military launches

Ariane 5's second launch of 2015

STELLAR CHEMISTRY
Astronomers Discover a Young Solar System Around a Nearby Star

Circular orbits identified for small exoplanets

Weather forecasts for planets beyond our solar system

Astrophysicists offer proof that famous image shows forming planets

STELLAR CHEMISTRY
MUOS-3 communications satellite completes in-orbit testing

Patent for Navy small space debris tracker granted

3D printers get Ugandan amputees back on their feet

Saving money and the environment with 3-D printing




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.