Subscribe to our free daily newsletters
. 24/7 Space News .

Subscribe to our free daily newsletters

Mercury's Surface Arose from Deep Inside the Planet
by Staff Writers
Yokohama, Japan (SPX) Jul 03, 2016

File image.

NASA researchers have found that several volcanic deposits on Mercury's surface require mantle melting to have started close to the planet's core-mantle boundary, which lies only 400 km below the planet's surface, making it unique in the solar system. This is reported at the Goldschmidt conference in Yokohama, Japan.

The recent MESSENGER mission to Mercury has shown that the surface of the planet is very heterogeneous, but it can be classified into two main types of regions. One is an area of relatively young northern volcanic plains (NVP) - these are between 3.7 and 3.8 billion years old. The other area consists of intercrater plains and heavily-cratered terrains (IcP-HCT), which are older, between 4 and 4.2 billion years old.

The older regions contain several previously unexplained features, including a large magnesium-rich spot, which is around 10,000,000 km square - around the size of Canada although because Mercury is much smaller than the Earth this spot takes up around 15% of the planet's surface.

Until now, there has been no satisfactory explanation of how the formation and history of the planet would have allowed these heterogeneous areas to develop without invoking melting of a heterogeneous mantle. But now a group of NASA scientists from the Johnson Space Center in Houston, have performed a series of experiments which explain most of the chemical compositions of Mercury's surface.

The researchers looked for the answers by simulating early conditions on Mercury. Mercury is believed to have formed under highly reduced conditions. Enstatite chondrites are similarly reduced and may be a good proxy to the chemical building blocks. So the researchers took the same chemistry as found in enstatite chondrites, and began to subject them to the sort of pressures and temperatures found in the deep mantle of Mercury.

The first author of the study, Dr. Asmaa Boujibar said: "We took a powdered chemical mix similar in composition to enstatite chondrites, which is thought to represent Mercury's building blocks, and subjected it to high pressures and temperatures. The pressures were high, up to 5 gigapascals (50,000 times the Earth's atmospheric pressure), which is the sort of pressure where you can form diamonds. This is the pressure of Mercury's core-mantle boundary."

She continued: "Mercury is a unique terrestrial planet. Unlike the Earth, it has a large core and a comparatively shallow mantle, meaning that the mantle-core boundary is only around 400 km below the planet's crust.

"The key finding is that by varying pressure and temperature on only one type of composition, we could produce the variety of material found on the planet's surface. These findings indicate that the older terrains are formed by material melting at high pressures up to the core-mantle boundary, while the younger terrains are formed closer to the surface.

"These results show also that Mercury likely formed with enstatite chondrites. The particularity of Mercury and these types of meteorites is their high sulfur content. The role of sulfur on magma composition was difficult to predict as Mercury is the only terrestrial planet with such high sulfur concentrations (1 to 4 weight %). For comparison, the mantles of Earth, Mars and the Moon have <0.1 weight % sulfur. Both effects of pressure and sulfur explain the overall heterogeneous surface composition of Mercury.

"A few regions of Mercury's surface remain difficult to explain, but it does go a long way to helping us understand why we find such a variety of features."

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once

credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly

paypal only


Related Links
European Association of Geochemistry
News Flash at Mercury
Mars News and Information at
Lunar Dreams and more

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

Previous Report
Researchers trace Mercury's origins to rare meteorite
Cambridge MA (SPX) Jul 01, 2016
Around 4.6 billion years ago, the universe was a chaos of collapsing gas and spinning debris. Small particles of gas and dust clumped together into larger and more massive meteoroids that in turn smashed together to form planets. Scientists believe that shortly after their formation, these planets - and particularly Mercury - were fiery spheres of molten material, which cooled over millions of y ... read more

Russia to spend $60M in 2016-2018 to fund space voyages to Moon, Mars

Russian Moon Base to Hold Up to 12 People

US may approve private venture moon mission: report

Fifty Years of Moon Dust

Unusual form of sand dune discovered on Mars

ChemCam findings hint at oxygen-rich past on Mars

Mars Rover's Sand-Dune Studies Yield Surprise

Curiosity rover analysis suggests Mars has oxygen-rich history

Quantum technologies to revolutionize 21st century

Blue Origin has fourth successful rocket booster landing

TED Talks aim for wider global reach

Disney brings its brand to Shanghai with new theme park

China to launch its largest carrier rocket later this year

China committed to peaceful use of outer space

China to launch second space lab Tiangong-2 in September

Upgraded "space shuttle bus" aboard new carrier rocket

Down to Earth: Returned astronaut relishes little things

NASA Ignites Fire Experiment Aboard Space Cargo Ship

A Burial Plot for the International Space Station

Three astronauts touch down after 6 months in space

Russia to Continue Rocket Engine Supplies to US Under Existing Contracts

India launches 20 satellites in single mission

LSU Chemistry Experiment Aboard Historic Suborbital Space Flight

Spaceflight contracts India's PSLV to launch 12 Planet Dove nanosats

When it comes to brown dwarfs, 'how far?' is a key question

What Happens When You Steam a Planet

How Planetary Age Reveals Water Content

Newborn Planet Discovered Around Young Star

Huge helium discovery 'a life-saving find'

OrbitOutlook integrates diverse network to help avoid collisions in space

Augmented reality helmet helps pilots see through clouds, fog

A shampoo bottle that empties completely - every last drop

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement