Subscribe to our free daily newsletters
. 24/7 Space News .




Subscribe to our free daily newsletters



TECH SPACE
Local fingerprint of hydrogen bonding captured in experiments
by Staff Writers
Berlin, Germany (SPX) Mar 28, 2016


The team could observe for the first time with RIXS how the formation of hydrogen bonds does change C=O bonds in aceton molecules. Image courtesy HZB. For a larger version of this image please go here.

Molecules are composed of atoms that maintain specific intervals and angles between one another. However, the shape of a molecule can change, for example, through proximity to other molecules, external forces and excitations, and also when a molecule makes a chemical connection with another molecule, for instance in a chemical reaction.

A very useful concept in describing the changes that are possible in molecules is the use of what are called "potential surfaces" or energy landscapes. However, these are not actual surfaces in real space. They are more viewed as parameters defining the molecule, which can then be portrayed as a surface. An example would be the stretching of a carbon-oxygen bond, or the angle between various molecular groups.

You can imagine such surfaces as being like hilly landscapes. If light excites part of the molecule into oscillation, the state of the molecule moves upward, energetically speaking, perhaps even up over a pass or a peak. It either returns finally to its previous energy minimum, or lands in a different energy dip that corresponds to altered angles or bond lengths. Some of these changes allow us to draw conclusions about hydrogen bonding with neighbouring molecules.

Response after excititation of the double bond C=O analysed
The team headed by Annette Pietzsch and Alexander Fohlisch has now for the first time succeeded in precisely measuring these extremely subtle surfaces surrounding a small molecule named acetone (C3H6O). They used the resonant inelastic X-ray scattering (RIXS) method at the Swiss Light Source of the Paul Scherrer Institut (PSI) in Switzerland for this work.

"We chose to selectively excite the double bond between the carbon and oxygen atom of acetone into oscillation and analysed the responses in detail", explains Annette Pietzsch. Thanks to the extremely high resolution of the measurement data, they were successful in mapping the potential surface along this C=O double bond.

Fingerprint of hydrogen bonds observed
In the second part of the experiment, they investigated a mixture of acetone and chloroform. A liquid mixture like this is denoted as azeotropic, meaning that the two ingredients can no longer be separated from one another through distillation.

The scientists were now able for the first time to empirically observe how the acetone molecules linked tightly to the chloroform molecules via hydrogen bonding. They were able to identify in the measurement data the fingerprint of the hydrogen bonds that form between the C=O group of the acetone molecules and hydrogen groups of the chloroform molecules.

Finding a needle in the haystack
"In conclusion, we demonstrated how sub-natural line width vibrational resolved RIXS gives direct experimental access to the ground state potential energy surface around selected atomic sites and moieties, not accessible with other techniques.

Our approach to the local ground state potential energy surface (...) resembles finding a needle in a haystack", writes the team in its contribution published in the renowned periodical Scientific Reports.

The performance of this approach will benefit strongly from upcoming high-brilliance synchrotrons and free-electron lasers in combination with upcoming high resolution RIXS instruments. Therefore, they foresee wide applicability of this technique to all thermal, collective and impurity driven chemistry and materials issues in the near future.

Annette Pietzsch works at the BESSY II synchrotron source in Berlin, setting up METRIXS - an instrument for resonant inelastic X-ray scattering that will be able to achieve considerably higher resolution in the future.

In addition, the meV-RIXS experiment will make high-resolution X-ray scattering in low-energy regions feasible. Alexander Fohlisch heads the HZB Institute for Methods and Instrumentation for Research with Synchrotron Radiation and is spokesperson of Helmholtz Virtual Institute for Dynamic Pathways in Multidimensional Landscapes (Helmholtz Virtual Institute 419).

Scientific Reports | 6:20054 | DOI: 10.1038/srep20054 Ground state potential energy surfaces around selected atoms from resonant inelastic x-ray scattering, Simon Schreck, Annette Pietzsch, Brian Kennedy, Conny Sathe, Piter S. Miedema, Simone Techert, Vladimir N. Strocov, Thorsten Schmitt, Franz Hennies, Jan-Erik Rubensson and Alexander Fohlisch.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

.


Related Links
Helmholtz-Zentrum Berlin fur Materialien und Energie
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECH SPACE
Tunable windows for privacy, camouflage
Boston MA (SPX) Mar 21, 2016
Say goodbye to blinds. Researchers at the Harvard John A. Paulson School of Engineering and Applied Sciences have developed a technique that can quickly change the opacity of a window, turning it cloudy, clear or somewhere in between with the flick of a switch. Tunable windows aren't new but most previous technologies have relied on electrochemical reactions achieved through expensive manu ... read more


TECH SPACE
Permanent Lunar Colony Possible in 10 Years

China to use data relay satellite to explore dark side of moon

NASA May Return to Moon, But Only After Cutting Off ISS

Lunar love: When science meets artistry

TECH SPACE
ExoMars probe imaged en route to Mars

How the ExoMars mission could sniff out life on Mars

ExoMars on its way to solve the Red Planet's mysteries

Europe's New Mars Mission Bringing NASA Radios Along

TECH SPACE
China regulator frowns on Anbang's hotel bids: report

Broomstick flying or red-light ping-pong? Gadgets at German fair

Jacobs Joins Coalition for Deep Space Exploration

Accelerating discovery with new tools for next generation social science

TECH SPACE
China to establish first commercial rocket launch company

China's ambition after space station

Sky is the limit for China's national strategy

Aim Higher: China Plans to Send Rover to Mars in 2020

TECH SPACE
Cygnus Set to Deliver Its Largest Load of Station Science, Cargo

Three new members join crew of International Space Station

Grandpa astronaut to break Scott Kelly's space record

Three new crew, including US grandpa, join space station

TECH SPACE
Launch of Dragon Spacecraft to ISS Postponed Until April

ILS and INMARSAT Agree To Future Proton Launch

Soyuz 2-1B Carrier Rocket Launched From Baikonur

ISRO launches PSLV C32, India's sixth navigation satellite

TECH SPACE
Most eccentric planet ever known flashes astronomers with reflected light

VLA shows earliest stages of planet formation

VLA observes earliest stages of planet formation

NASA's K2 mission: Kepler second chance to shine

TECH SPACE
Lehigh scientists extend the reach of single crystals

A new-structure magnetic memory device developed

Detecting radioactive material from a remote distance

The quest for spin liquids




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement